AIGC有趣的项目

AIGC是什么

AIGC 即 AI Generated Content,利用人工智能技术生成内容,常见的有text to image、image to text、 image style transfer等等

本文主要做什么

这里是个人觉得AIGC很好玩,所以写一篇博客用于记录自己做过的AIGC模型,会从前些年比较基础的做起,然后一直更新到时新的技术,比如从VAE到Diffusion。因为会从很基础的做起,所以也比较适合新手入门学习,学会之后可以自己适当修改模型看看效果。总共分为四个类型:纯生成图像、纯生成文本、文字生成图像、图像生成文本。由于自己是在空闲时间做着玩,所以更新速度不会太快,所有项目都会以github链接给出,如果有喜欢的希望能够给个star。

生成图像

VAE初级:VAE生成手写数字
CVAE:条件生成手写数字
VAE进阶:VAE生成动漫头像
GAN初级:GAN生成手写数字
GAN进阶:DCGAN生成动漫头像

正在路上~
CGAN:条件生成手写数字
DDPM初级:Diffusion生成手写数字

生成文本

(这个比较简单就是decoder结构,不过需要大量数据,暂不打算做)正在路上~

文本生成图像

正在路上~

图像生成文本

正在路上~

### AIGC 实战项目示例 AIGC人工智能生成内容)已经在多个领域得到了广泛应用,以下是几个具体的实战项目案例及其代码示例。 #### 1. 文本生成 利用 GPT 或其他预训练语言模型可以完成文本生成任务。例如,基于 Hugging Face Transformers 庌的 Python 代码如下: ```python from transformers import pipeline # 加载预训练模型 text_generator = pipeline("text-generation", model="gpt2") # 输入提示并生成文本 prompt = "Artificial intelligence is" generated_text = text_generator(prompt, max_length=50, num_return_sequences=1) print(generated_text) ``` 这段代码展示了如何使用 `pipeline` 方法加载 GPT-2 模型,并根据给定的输入生成一段完整的文本[^2]。 --- #### 2. 图像生成 图像生成是 AIGC 的重要应用场景之一。以下是一个简单的 DALL·E 风格的图像生成代码示例,使用 Stable Diffusion 工具库: ```python import torch from diffusers import StableDiffusionPipeline model_id = "runwayml/stable-diffusion-v1-5" device = "cuda" if torch.cuda.is_available() else "cpu" pipe = StableDiffusionPipeline.from_pretrained(model_id).to(device) # 使用自然语言描述生成图片 image = pipe("a photograph of an astronaut riding a horse").images[0] # 保存生成的图片 image.save("astronaut_rides_horse.png") ``` 此代码片段演示了如何通过文字描述生成高质量的图像[^4]。 --- #### 3. 强化学习控制模拟器 强化学习是一种重要的机器学习方法,在游戏、机器人等领域有广泛的应用。下面展示了一个经典的 CartPole 控制问题实例: ```python import gym from stable_baselines3 import PPO # 创建环境 env = gym.make("CartPole-v1") # 定义策略网络和训练参数 model = PPO("MlpPolicy", env, verbose=1) # 进行训练 model.learn(total_timesteps=10000) # 测试模型性能 mean_reward, std_reward = model.evaluate_policy(env, n_eval_episodes=10) print(f"平均奖励: {mean_reward:.2f} ± {std_reward:.2f}") ``` 该代码实现了对 CartPole 游戏的学习过程,最终能够稳定地保持杆子平衡[^5]。 --- #### 4. 自然语言处理中的关键词提取 对于初学者来说,可以从简单任务入手,比如从文章中提取关键词。这里提供一个基于 TF-IDF 的实现方式: ```python from sklearn.feature_extraction.text import TfidfVectorizer corpus = [ "This is the first document.", "This document is the second document.", "And this is the third one.", "Is this the first document?", ] vectorizer = TfidfVectorizer() X = vectorizer.fit_transform(corpus) feature_names = vectorizer.get_feature_names_out() for i in range(len(corpus)): scores = zip(feature_names, X[i].toarray()[0]) sorted_scores = sorted(scores, key=lambda x: x[1], reverse=True)[:5] print(f"Document {i}: Top keywords:", [(word, round(score, 3)) for word, score in sorted_scores]) ``` 上述脚本计算每篇文档的重要关键词列表[^3]。 --- ### 总结 这些案例涵盖了文本生成、图像合成、强化学习以及 NLP 基础操作等多个方向,适合不同层次的技术爱好者尝试实践。每个例子都附带具体代码以便于理解与扩展。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值