L2-047 锦标赛(dfs解法,相当清晰)

题目如下:

有 2k 名选手将要参加一场锦标赛。锦标赛共有 k 轮,其中第 i 轮的比赛共有 2k−i 场,每场比赛恰有两名选手参加并从中产生一名胜者。每场比赛的安排如下:

  • 对于第 1 轮的第 j 场比赛,由第 (2j−1) 名选手对抗第 2j 名选手。
  • 对于第 i 轮的第 j 场比赛(i>1),由第 (i−1) 轮第 (2j−1) 场比赛的胜者对抗第 (i−1) 轮第 2j 场比赛的胜者。

第 k 轮唯一一场比赛的胜者就是整个锦标赛的最终胜者。
举个例子,假如共有 8 名选手参加锦标赛,则比赛的安排如下:

  • 第 1 轮共 4 场比赛:选手 1 vs 选手 2,选手 3 vs 选手 4,选手 5 vs 选手 6,选手 7 vs 选手 8。
  • 第 2 轮共 2 场比赛:第 1 轮第 1 场的胜者 vs 第 1 轮第 2 场的胜者,第 1 轮第 3 场的胜者 vs 第 1 轮第 4 场的胜者。
  • 第 3 轮共 1 场比赛:第 2 轮第 1 场的胜者 vs 第 2 轮第 2 场的胜者。

已知每一名选手都有一个能力值,其中第 i 名选手的能力值为 ai​。在一场比赛中,若两名选手的能力值不同,则能力值较大的选手一定会打败能力值较小的选手;若两名选手的能力值相同,则两名选手都有可能成为胜者。

令 li,j​ 表示第 i 轮第 j 场比赛 败者 的能力值,令 w 表示整个锦标赛最终胜者的能力值。给定所有满足 1≤i≤k 且 1≤j≤2k−i 的 li,j​ 以及 w,请还原出 a1​,a2​,⋯,an​。

输入格式:

第一行输入一个整数 k(1≤k≤18)表示锦标赛的轮数。
对于接下来 k 行,第 i 行输入 2k−i 个整数 li,1​,li,2​,⋯,li,2k−i​(1≤li,j​≤109),其中 li,j​ 表示第 i 轮第 j 场比赛 败者 的能力值。
接下来一行输入一个整数 w(1≤w≤109)表示锦标赛最终胜者的能力值。

输出格式:

输出一行 n 个由单个空格分隔的整数 a1​,a2​,⋯,an​,其中 ai​ 表示第 i 名选手的能力值。如果有多种合法答案,请输出任意一种。如果无法还原出能够满足输入数据的答案,输出一行 No Solution
请勿在行末输出多余空格。

输入样例1:

3
4 5 8 5
7 6
8
9

输出样例1:

7 4 8 5 9 8 6 5

输入样例2:

2
5 8
3
9

输出样例2:

No Solution

提示:

本题返回结果若为格式错误均可视为答案错误

代码如下:可以看注释理解一下哈,有问题欢迎提问

#include<bits/stdc++.h>
using namespace std;
int p[100000000];
int l[200][200000];

bool dfs(int k,int j,int w){//k表示第几轮,j表示第几场,w表示该场胜利者
    if(k==1){
        //已经回溯到第一轮了
        if(w>=l[k][j]){
            //表示满足条件,则随意加入p即可
            p[2*j-1]=l[k][j];
            p[2*j]=w;
            return true;
        }else{
            //清空全部
            return false;
        }
    }
    //递归式
    if(w<l[k][j]) return false;//若都比不过这个位置的败者,则直接返回false
    //如果比得过这个位置的败者的话,要么把胜者安排在左边,要么安排在右边
    if(dfs(k-1,2*j-1,w)&&dfs(k-1,2*j,l[k][j])){
        return true;
    }else if(dfs(k-1,2*j-1,l[k][j])&&dfs(k-1,2*j,w)){
        return true;
    }
    //若无论怎么安排都不可以,则说明无解
    return false;
}

int main(void){
    int k,w;
    cin>>k;
    for(int i=1;i<=k;i++){
        for(int j=1;j<=pow(2,k-i);j++) cin>>l[i][j];
    }
    cin>>w;
    //传入第几轮第几场以及这场的胜者
    if(dfs(k,1,w)){
        for(int i=1;i<=pow(2,k);i++){
            cout<<p[i];
            if(i!=pow(2,k)) cout<<" ";
        }
        cout<<endl;
    }else{
        cout<<"No Solution";
    }
    return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值