题目如下:
有 2k 名选手将要参加一场锦标赛。锦标赛共有 k 轮,其中第 i 轮的比赛共有 2k−i 场,每场比赛恰有两名选手参加并从中产生一名胜者。每场比赛的安排如下:
- 对于第 1 轮的第 j 场比赛,由第 (2j−1) 名选手对抗第 2j 名选手。
- 对于第 i 轮的第 j 场比赛(i>1),由第 (i−1) 轮第 (2j−1) 场比赛的胜者对抗第 (i−1) 轮第 2j 场比赛的胜者。
第 k 轮唯一一场比赛的胜者就是整个锦标赛的最终胜者。
举个例子,假如共有 8 名选手参加锦标赛,则比赛的安排如下:
- 第 1 轮共 4 场比赛:选手 1 vs 选手 2,选手 3 vs 选手 4,选手 5 vs 选手 6,选手 7 vs 选手 8。
- 第 2 轮共 2 场比赛:第 1 轮第 1 场的胜者 vs 第 1 轮第 2 场的胜者,第 1 轮第 3 场的胜者 vs 第 1 轮第 4 场的胜者。
- 第 3 轮共 1 场比赛:第 2 轮第 1 场的胜者 vs 第 2 轮第 2 场的胜者。
已知每一名选手都有一个能力值,其中第 i 名选手的能力值为 ai。在一场比赛中,若两名选手的能力值不同,则能力值较大的选手一定会打败能力值较小的选手;若两名选手的能力值相同,则两名选手都有可能成为胜者。
令 li,j 表示第 i 轮第 j 场比赛 败者 的能力值,令 w 表示整个锦标赛最终胜者的能力值。给定所有满足 1≤i≤k 且 1≤j≤2k−i 的 li,j 以及 w,请还原出 a1,a2,⋯,an。
输入格式:
第一行输入一个整数 k(1≤k≤18)表示锦标赛的轮数。
对于接下来 k 行,第 i 行输入 2k−i 个整数 li,1,li,2,⋯,li,2k−i(1≤li,j≤109),其中 li,j 表示第 i 轮第 j 场比赛 败者 的能力值。
接下来一行输入一个整数 w(1≤w≤109)表示锦标赛最终胜者的能力值。
输出格式:
输出一行 n 个由单个空格分隔的整数 a1,a2,⋯,an,其中 ai 表示第 i 名选手的能力值。如果有多种合法答案,请输出任意一种。如果无法还原出能够满足输入数据的答案,输出一行 No Solution
。
请勿在行末输出多余空格。
输入样例1:
3
4 5 8 5
7 6
8
9
输出样例1:
7 4 8 5 9 8 6 5
输入样例2:
2
5 8
3
9
输出样例2:
No Solution
提示:
本题返回结果若为格式错误均可视为答案错误。
代码如下:可以看注释理解一下哈,有问题欢迎提问
#include<bits/stdc++.h>
using namespace std;
int p[100000000];
int l[200][200000];
bool dfs(int k,int j,int w){//k表示第几轮,j表示第几场,w表示该场胜利者
if(k==1){
//已经回溯到第一轮了
if(w>=l[k][j]){
//表示满足条件,则随意加入p即可
p[2*j-1]=l[k][j];
p[2*j]=w;
return true;
}else{
//清空全部
return false;
}
}
//递归式
if(w<l[k][j]) return false;//若都比不过这个位置的败者,则直接返回false
//如果比得过这个位置的败者的话,要么把胜者安排在左边,要么安排在右边
if(dfs(k-1,2*j-1,w)&&dfs(k-1,2*j,l[k][j])){
return true;
}else if(dfs(k-1,2*j-1,l[k][j])&&dfs(k-1,2*j,w)){
return true;
}
//若无论怎么安排都不可以,则说明无解
return false;
}
int main(void){
int k,w;
cin>>k;
for(int i=1;i<=k;i++){
for(int j=1;j<=pow(2,k-i);j++) cin>>l[i][j];
}
cin>>w;
//传入第几轮第几场以及这场的胜者
if(dfs(k,1,w)){
for(int i=1;i<=pow(2,k);i++){
cout<<p[i];
if(i!=pow(2,k)) cout<<" ";
}
cout<<endl;
}else{
cout<<"No Solution";
}
return 0;
}