二维费用的背包问题

题目:toj3596

题意:有N张光盘,每张光盘有一个价钱,现在要从N张光盘中买M张,预算为L,每张光盘有一个快乐值,要求在不超过预算并且恰好买M张,使得快乐值最大。

解答:典型的二维费用背包问题,另外一种隐含的费用为个数,每个物品的个数费用为1。要求恰好买M张表示要求恰好装满,所以初始化不是0,而是-INF。

二维背包的状态转移方程:F[i, v, u] = max{F[i − 1, v, u], F[i − 1, v − Ci, u − Di] + Wi}

如果空间优化,u,v必须均逆序。

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int MAXN = 1010;
const int INF = 1 << 31;
struct Movie
{
    int t,v;
};
Movie movie[MAXN];
int dp[MAXN][MAXN];
int n,m,l;
int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d%d%d",&n,&m,&l);
        for(int i = 1;i <= m;i++)
            for(int j = 0;j <= l;j++)
                dp[j][i] = -INF;
        for(int j = 0;j <= l;j++)
            dp[j][0] = 0;
        for(int i = 1;i <= n;i++)
            scanf("%d%d",&movie[i].t,&movie[i].v);
        for(int i = 1;i <= n;i++)
            for(int j = l;j >= movie[i].t;j--)
            for(int k = m;k >= 1;k--)
            dp[j][k] = max(dp[j][k],dp[j-movie[i].t][k-1]+movie[i].v);
        int ans = 0;
        for(int i = 1;i <= l;i++)
            if(dp[i][m] > ans)
            ans = dp[i][m];
        printf("%d\n",ans);
    }
    return 0;
}



评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值