动态规划:二维背包问题
⼀和零
1. 题⽬链接
https://leetcode.cn/problems/ones-and-zeroes/description/
2. 题⽬描述
给你⼀个⼆进制字符串数组 strs 和两个整数 m 和 n 。
请你找出并返回 strs 的最⼤⼦集的⻓度,该⼦集中 最多 有 m 个 0 和 n 个 1 。
如果 x 的所有元素也是 y 的元素,集合 x 是集合 y 的 ⼦集 。
⽰例 1:
输⼊:strs = [“10”, “0001”, “111001”, “1”, “0”], m = 5, n = 3
输出:4
解释:最多有 5 个 0 和 3 个 1 的最⼤⼦集是 {“10”,“0001”,“1”,“0”} ,因此答案是 4 。
其他满⾜题意但较⼩的⼦集包括 {“0001”,“1”} 和 {“10”,“1”,“0”} 。{“111001”} 不满⾜题意,因为它
含 4 个 1 ,⼤于 n 的值 3 。
⽰例 2:
输⼊:strs = [“10”, “0”, “1”], m = 1, n = 1
输出:2 解释:最⼤的⼦集是 {“0”, “1”} ,所以答案是 2 。
提⽰:
1 <= strs.length <= 600
1 <= strs[i].length <= 100
strs[i] 仅由 ‘0’ 和 ‘1’ 组成
1 <= m, n <= 100
3. 解法(动态规划)
算法思路:
先将问题转化成我们熟悉的题型。
i. 在⼀些物品中「挑选」⼀些出来,然后在满⾜某个「限定条件」下,解决⼀些问题,⼤概率 是背包模型;
ii. 由于每⼀个物品都只有 1 个,因此是⼀个「01 背包问题」。 但是,我们发现这⼀道题⾥⾯有「两个限制条件」。因此是⼀个「⼆维费⽤的 01 背包问题」。那 么我们定义状态表⽰的时候,来⼀个三维
dp 表,把第⼆个限制条件加上即可。
1. 状态表⽰:
dp[i][j][k] 表⽰:从前 i 个字符串中挑选,字符 0 的个数不超过 j ,字符 1 的个数不 超过 k ,所有的选法中,最⼤的⻓度。
2. 状态转移⽅程:
线性 dp 状态转移⽅程分析⽅式,⼀般都是「根据最后⼀步」的状况,来分情况讨论。为了⽅便 叙述,我们记第 i 个字符中,字符 0 的个数为
a ,字符 1 的个数为 b :i. 不选第 i 个字符串:相当于就是去前 i - 1 个字符串中挑选,并且字符 0 的个数不超 过 j ,字符 1 的个数不超过 k
。此时的最⼤⻓度为dp[i][j][k] = dp[i - 1][j][k]
;ii. 选择第 i 个字符串:那么接下来我仅需在前 i - 1 个字符串⾥⾯,挑选出来字符 0 的 个数不超过
j - a
,字符 1
的个数不超过 k - b 的最⻓⻓度,然后在这个⻓度后⾯加 上字符串 i 即可。。此时 `dp[i][j][k] = dp[i - 1][j
- a][k - b] + 1
。 但是这种状态不⼀定存在,因此需要特判⼀下。 综上,状态转移⽅程为:
dp[i][j][k] = max(dp[i][j][k], dp[i - 1][j - a][k - b] + 1)` 。
3. 初始化:
当没有字符串的时候,没有⻓度,因此初始化为 0 即可。
4. 填表顺序:
保证第⼀维的循环「从⼩到⼤」即可。
5. 返回值:
根据「状态表⽰」,我们返回
dp[len][m][n]
。 其中 len 表⽰字符串数组的⻓度。
6. 空间优化:
所有的「背包问题」,都可以进⾏空间上的优化。 对于「⼆维费⽤的 01 背包」类型的,我们的优化策略是:
i. 删掉第⼀维;
ii. 修改第⼆层以及第三层循环的遍历顺序即可。
4.代码
class Solution {
public int findMaxForm(String[] strs, int m, int n) {
int len = strs.length;
int[][][] dp = new int[len+1][m+1][n+1];
for(int i = 1; i <= len; i++){
int a = 0;//strs[i-1]中0的个数
int b = 0; //strs[i-1]中1的个数
for(int r = 0; r < strs[i-1].length(); r++){
if(strs[i-1].charAt(r) == '0' ) {
a++;
}else if(strs[i-1].charAt(r) == '1'){
b++;
}
}
for(int j = 0; j <= m ; j++){
for(int k = 0; k<=n; k++){
dp[i][j][k]=dp[i-1][j][k];
if(j-a>=0 && k-b>=0){
dp[i][j][k]=Math.max(dp[i][j][k],dp[i-1][j-a][k-b]+1);
}
}
}
}
return dp[len][m][n];
}
}
盈利计划
1. 题⽬链接
2. 题⽬描述
集团⾥有 n 名员⼯,他们可以完成各种各样的⼯作创造利润。 第 i 种⼯作会产⽣ profit[i] 的利润,它要求 group[i]
名成员共同参与。如果成员参与了其中⼀项⼯ 作,就不能参与另⼀项⼯作。 ⼯作的任何⾄少产⽣ minProfit 利润的⼦集称为 盈利计划
。并且⼯作的成员总数最多为 n 。 有多少种计划可以选择?因为答案很⼤,所以 返回结果模 10^9 + 7 的值。 ⽰例 1:
输⼊:n = 5, minProfit = 3, group = [2,2], profit = [2,3] 输出:2 解释:⾄少产⽣
3 的利润,该集团可以完成⼯作 0 和⼯作 1 ,或仅完成⼯作 1 。 总的来说,有两种计划。 ⽰例 2: 输⼊:n = 10,
minProfit = 5, group = [2,3,5], profit = [6,7,8] 输出:7 解释:⾄少产⽣ 5
的利润,只要完成其中⼀种⼯作就⾏,所以该集团可以完成任何⼯作。 有 7
种可能的计划:(0),(1),(2),(0,1),(0,2),(1,2),以及 (0,1,2) 。 提⽰: 1 <= n <= 100 0
<= minProfit <= 100 1 <= group.length <= 100 1 <= group[i] <= 100
profit.length == group.length 0 <= profit[i] <= 100
3. 解法(动态规划):
算法思路:
这道题⽬⾮常难读懂,但是如果结合例⼦多读⼏遍,你就会发现是⼀个经典的「⼆维费⽤的背包问题」。因此我们可以仿照「⼆维费⽤的背包」来定义状态表⽰
。
1. 状态表⽰:
dp[i][j][k] 表⽰:从前 i 个计划中挑选,总⼈数不超过 j ,总利润⾄少为 k ,⼀共有多 少种选法。
注意注意注意,这道题⾥⾯出现了⼀个「⾄少」,和我们之前做过的背包问题不⼀样。因此,我们在分析「状态转移⽅程」的时候要结合实际情况考虑⼀下。
2. 状态转移⽅程:
⽼规矩,根据「最后⼀个位置」的元素,结合题⽬的要求,我们有「选择」最后⼀个元素或者「不选择」最后⼀个元素两种策略:
i. 不选 i 位置的计划:那我们只能去前 i - 1 个计划中挑选,总⼈数不超过 j ,总利润⾄少为 k 。此时⼀共有
dp[i - 1][j][k]
种选法;ii. 选择 i 位置的计划:那我们在前 i - 1 个计划中挑选的时候,限制就变成了,总⼈数不超过
j - g[i]
,总利润⾄少为k - p[i]
。此时⼀共有dp[i - 1][j - g[i]][k - p[i]]
。
第⼆种情况下有两个细节需要注意:
1. j - g[i] < 0 :此时说明 g[i] 过⼤,也就是⼈数过多。因为我们的状态表⽰要求⼈数是不能超过 j 的,因此这个状态是不合法的,需要舍去。
2. k - p[i] < 0 :此时说明 p[i] 过⼤,也就是利润太⾼。但是利润⾼,不正是我 们想要的嘛?所以这个状态「不能舍去」。但是问题来了,我们的 dp 表是没有负数的
下标的,这就意味着这些状态我们⽆法表⽰。其实,根本不需要负的下标,我们根据实
际情况来看,如果这个任务的利润已经能够达标了,我们仅需在之前的任务中,挑选出 来的利润⾄少为 0
就可以了。因为实际情况不允许我们是负利润,那么负利润就等价于利润⾄少为 0 的情况。所以说这种情况就等价于 dp[i][j][0] ,我们可以对 k - p[i] 的结果与 0 取⼀个 max 。
综上,我们的状态转移⽅程为:
dp[i][j][k] = dp[i - 1][j][k] + dp[i - 1][j - g[i - 1]][max(0, k
- p[i - 1])] 。
3. 初始化:
当没有任务的时候,我们的利润为 0 ,此时⽆论⼈数限制为多少,我们都能找到⼀个「空集」的 ⽅案。 因此初始化
dp[0][j][0] 的位置为 1 ,其中 0 <= j <= n 。
4. 填表顺序:
根据「状态转移⽅程」,我们保证 i 从⼩到⼤即可。
5. 返回值:
根据「状态表⽰」,我们返回 dp[len][m][n] 。 其中 len 表⽰字符串数组的⻓度。
4.代码
class Solution {
public int profitableSchemes(int n, int minProfit, int[] group, int[] profit) {
int MOD = (int)1e9 + 7; // 注意结果取模
int m = profit.length;
int[][][] dp = new int[m+1][n+1][minProfit+1];
//初始化
for(int j = 0; j <= n; j++)dp[0][j][0] = 1;
for(int i = 1; i <= m;i++){
for(int j = 0; j <= n; j++ ){
for(int k = 0; k <= minProfit; k++){
dp[i][j][k]+=dp[i-1][j][k];
if(j-group[i-1]>=0){
int ret = Math.max(0,k-profit[i-1]);
dp[i][j][k]+=dp[i-1][j-group[i-1]][ret];
// 注意结果取模
dp[i][j][k] %= MOD;
}
}
}
}
return dp[m][n][minProfit];
}
}