算法竞赛—乘法逆元

乘法逆元

定义:对于正整数 a a a,存在至少一个 x x x使得 a x ≡ 1 m o d    p ax\equiv1\mod p ax1modp ,则称所有满足以上条件的 x x x均为 a a a在模 p p p意义下的乘法逆元,一般记作 a − 1 a^{-1} a1

  1. 用扩展欧几里得算法求逆元
    本质是求线性同余方程 a x ≡ 1 m o d    p ax\equiv1 \mod p ax1modp的解 x x x
    上式可变形为 a x + p y = 1 ( x , y ∈ N ) ax+py=1(x,y \in N) ax+py=1(x,yN),由裴蜀定理可知, g c d ( a , p ) = 1 gcd(a,p)=1 gcd(a,p)=1
    扩展欧几里得算法即是基于以上等式诞生的。
int exgcd(int a,int b,int &x,int &y){
	if(b==0){
		x=1,y=0;
		return a;
	}
	int d=exgcd(b,a%b,y,x);
	y-=a/b*x;
	return d;
}
  1. p p p为质数时,利用费马小定理简化求逆元
    费马小定理:当 p p p为质数时,线性同余方程 a x ≡ 1 m o d    p ax \equiv 1\mod p ax1modp 必存在解 x = a p − 2 x=a^{p-2} x=ap2
    因此在此特殊条件下,求乘法逆元即为求 a p − 2 m o d    p a^{p-2}\mod p ap2modp,而这个高次幂可以简单地通过循环求出,或者用快速幂加速得出。故此代码省略。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值