乘法逆元( ̄︶ ̄)↗(南昌理工学院ACM集训队)

乘法逆元(c++)——南昌理工学院ACM集训队

逆元简介

在进行大数计算时,为防止超出空间通常要用到取模(mod)操作;
在各类计算操作中,加法、减法、乘法的取模操作都满足分配律;

a % p + b % p = ( a % p + b % p ) % p;
a % p - b % p = ( a % p - b % p ) % p;
a % p * b % p = ( a % p * b % p ) % p;

而除法的取模运算显然不符合分配律;由此,推出了逆元这慨念;

定义:在mod p的条件下,对于整数a,有a*x mod p与1同余,则a与x互为乘法逆元;
a存在 mod p的乘法逆元的充要条件为a与p互质,即q与p最大公约数为1;

求取逆元

1.费马小定理

定理:若a不是p的倍数,则a^(p-1) mod p时与1同余;
由此可推出—>mod p 的情况下a的逆元=a^(p-2);
a ^ ( p - 1) ≡ 1( mod p );
a * x ≡ 1 ( mod p );
两式相减;
a ^ ( p - 1 ) ≡ a * x ;
化简得:x = a ^ ( p - 2 ) ;

此逆元可用快速幂求解;

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;

int pow_mod(int a, int n, int m)//快速幂求取b^(p-2)
{
    if(n == 0) return 1;
    int x = pow_mod(a, n/2, m);
    long long ans = (long long)x * x % m;
    if(n % 2 == 1) ans = ans *a % m;
    return (int)ans;
}

int main()
{
	int x,p;
	cin>>x>>p;
	int un=(pow_mod(x,p-2,p))%p;//逆元公式;
	cout<<un<<endl;
	return 0;
}
2.线性递推逆元

对于不同的问题就需要用到不同的方法;
而在逆元问题上,当需要解摸的逆元数较多且连续时,此时运用费马小定理快速幂可能会超时;
由此,引出线性递推逆元;
例如题——>洛谷P3811
在这里插入图片描述
一道求逆元的模板题,看到上方的数据,n最高为3 x 10^6,若是每一个逆元都用快速幂去求解,一定会超时;
而线性递推逆元与费马小定理一样,都是套用公式;
线性递推求逆元公式:( p - p / i ) * ans [ p % i ] % p;
其中求i的逆元,mod p;

long long a[3000005];

int main()
{
	long long n,p;
	scanf("%lld%lld",&n,&p);
	a[1]=1;//对a[1]初始化
	printf("%d\n",a[1]);
	for(int i=2;i<=n;i++){
		a[i]=(long long)(p-p/i)*a[p%i]%p;//递推公式;
		printf("%lld\n",a[i]);
	}
	return 0;
}

公式推导:
当求1~N的各个位置逆元时:
首先,我们设t = P / i,k = P % i ;
·对于i ∗ t + k ≡ 0 ( mod P ) ,我们可以做出如下推导:
·等式两边同时除以i ∗ k,我们可以得到新式子t / k + 1 / i≡ 0 ( mod P );
·从而得到:P / i ∗ inv[ P % i ]+inv[ i ]≡0 ( mod P);
·最后得到ans [ i ] = ( p - p / i ) * ans [ p % i ] % p;

  • 5
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值