模版题
深搜,找到规律:F(n)=F(n-1)+F(n-2)*5+F(n-3)-F(n-4)
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>d
using namespace std;
int used[4][1000000];
int n,sum;
void dfs(int x,int y)
{
if(x==3&&y==n){sum++;return;}
else
{
if(y==n)dfs(x+1,0);
else
{
if(used[x][y]==1){dfs(x,y+1);return;}
if(y+1<n&&used[x][y+1]==0)
{
used[x][y]=1;
used[x][y+1]=1;
dfs(x,y+2);
used[x][y]=0;
used[x][y+1]=0;
}
if(x+1<4&&used[x+1][y]==0)
{
used[x][y]=1;
used[x+1][y]=1;
dfs(x,y+1);
used[x][y]=0;
used[x+1][y]=0;
}
}
}
}
int main()
{
while(~scanf("%d",&n))
{
memset(used,0,sizeof(used));
sum=0;
dfs(0,0);
printf("%d\n",sum);
}
return 0;
}
接下来就是矩阵幂的模版了。
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<vector>
using namespace std;
typedef vector<int> vec;
typedef vector<vec> mat;
typedef long long ll;
int M;
int n;
mat mul(mat &A,mat &B)
{
mat C(A.size(),vec(B[0].size()));
for(int i=0;i<A.size();i++)
{
for(int k=0;k<B.size();k++)
{
for(int j=0;j<B[0].size();j++)
{
C[i][j]=(C[i][j]+(A[i][k]*B[k][j])%M)%M;
if(C[i][j]<0)C[i][j]+=M;
}
}
}
return C;
}
mat pow(mat A,ll n)
{
mat B(A.size(),vec(A.size()));
for(int i=0;i<A.size();i++)
{
B[i][i]=1;
}
while(n>0)
{
if(n&1)B=mul(B,A);
A=mul(A,A);
n>>=1;
}
return B;
}
int main()
{
//freopen("3420.txt","r",stdin);
while(~scanf("%d%d",&n,&M))
{
if(n==0&&M==0)break;
mat A(4,vec(4));
A[0][0]=1;A[0][1]=5;A[0][2]=1;A[0][3]=-1;
A[1][0]=1;A[1][1]=0;A[1][2]=0;A[1][3]=0;
A[2][0]=0;A[2][1]=1;A[2][2]=0;A[2][3]=0;
A[3][0]=0;A[3][1]=0;A[3][2]=1;A[3][3]=0;
//if(M==1)
//{
// printf("0\n");
//}
//else
//{
A=pow(A,n);
mat B(4,vec(1));
B[0][0]=1;B[1][0]=0;B[2][0]=1;B[3][0]=1;
int ans=0;
for(int i=0;i<4;i++)
{
ans=(ans+A[0][i]*B[i][0]%M)%M;
}
printf("%d\n",ans);
//}
}
return 0;
}