LeetCode常见的回文串问题汇总

回文串问题

125. 验证回文串 — 简单题

leetocode链接

给定一个字符串,验证它是否是回文串,只考虑字母和数字字符,可以忽略字母的大小写。

**说明:**本题中,我们将空字符串定义为有效的回文串。

示例 1:

输入: "A man, a plan, a canal: Panama"
输出: true
解释:"amanaplanacanalpanama" 是回文串

示例 2:

输入: "race a car"
输出: false
解释:"raceacar" 不是回文串

提示:

  • 1 <= s.length <= 2 * 105
  • 字符串 s 由 ASCII 字符组成
代码实现 — 使用双指针法
class Solution {
    public boolean isPalindrome(String s) {
        StringBuffer sb = new StringBuffer();
        int length = s.length();
        for (int i = 0; i < length; i++) {
            char ch = s.charAt(i);
            //使用Character的isLetterOrDigit()来判断其是否为数字或者字母
            if (Character.isLetterOrDigit(ch)) {
                sb.append(Character.toLowerCase(ch));
            }
        }
        int n = sb.length();
        int left = 0, right = n - 1;
        while (left < right) {
            if (sb.charAt(left) != sb.charAt(right)) {
                return false;
            }
            ++left;
            --right;
        }
        return true;
    }
}

5. 最长回文子串 — 中等题

leetcode链接

给你一个字符串 s,找到 s 中最长的回文子串。

示例 1:

输入:s = "babad"
输出:"bab"
解释:"aba" 同样是符合题意的答案。

示例 2:

输入:s = "cbbd"
输出:"bb"

示例 3:

输入:s = "a"
输出:"a"

示例 4:

输入:s = "ac"
输出:"a"

提示:

  • 1 <= s.length <= 1000
  • s 仅由数字和英文字母(大写和/或小写)组成
思路分析:

这道题可以采用动态规划和左右扩散法进行求解:

其中动态规划法,我们可以定义一个二维的boolean数组dp[n] [n],其中dp[i] [j]表示表示[i,…,j]区间的子串是否为回文串,此时我们初始化:

  • 只有一个字母一定为回文串,两个字母如果相等,也一定为回文串

    for (int i = 0; i < n; i++) {
        dp[i][i] = true;
    }
    for (int i = 1; i < n; i++) {
        if (s.charAt(i) == s.charAt(i - 1)) {
            dp[i - 1][i] = true;
        }
    }
    
  • 动态转移方程:如果如果【i + 1, j - 1】区间是回文串,并且此时i和j位置的值相等,则说明【i,j】为回文串
    i f ( d p [ i + 1 ] [ j − 1 ] 并 且 s . c h a r A t ( i ) = = s . c h a r A t ( j ) ) d p [ i ] [ j ] = t r u e ; if (dp[i + 1][j - 1] 并且 s.charAt(i) == s.charAt(j)) \\ dp[i][j] = true; if(dp[i+1][j1]s.charAt(i)==s.charAt(j))dp[i][j]=true;

然后我们定义一个最长回文子串的起始索引,以及其最长的长度,更新最后得到我们的结果集

而如果采取左右扩散法,就是以每一个字母作为中心点,向左右扩散,以满足回文串的要求

代码实现:
class Solution {
    public String longestPalindrome(String s) {
        int n = s.length();
        if(n == 1) return s;
        //表示[i,....,j]区间的子串是否为回文串
        boolean[][] dp = new boolean[n][n];
        String ans = "";
        int begin = 0;
        int maxLen = 1;
        //初始化:只有一个字母一定为回文串,两个字母如果相等,也一定为回文串
        for (int i = 0; i < n; i++) {
            dp[i][i] = true;
        }
        for (int i = 1; i < n; i++) {
            if (s.charAt(i) == s.charAt(i - 1)) {
                dp[i - 1][i] = true;
                begin = i - 1;
                maxLen = 2;
            }
        }
        //更新结果集:更新的区间的长度从2开始
        for (int j = 2; j < n; j++) { //j ∈ [2 ---> n - 1]
            for (int i = j - 2; i >= 0; i--) { //i ∈ [j - 1 ---> 0]
                //如果【i + 1, j - 1】区间是回文串,并且此时i和j位置的值相等,则说明【i,j】为回文串
                if (dp[i + 1][j - 1] && s.charAt(i) == s.charAt(j)) {
                    dp[i][j] = true;
                }
                if (dp[i][j] && (j - i + 1) > maxLen) {
                    begin = i;
                    maxLen = j - i + 1;
                }
            }
        }
        return s.substring(begin,begin + maxLen);
    }
}
class Solution {
    public String longestPalindrome(String s) {
        //使用左右扩展法
        int n = s.length();
        int window = 0;
        String ans = "";
        for(int i = 0; i < n; i++) {  //从0 ~ n,正常遍历
            //左扩展
            int left = i - 1;
            while(left >= 0 && s.charAt(left) == s.charAt(i)) {
                --left;
            }
            //右扩散
            int right = i + 1;
            while(right <= n - 1 && s.charAt(right) == s.charAt(i)) {
                ++right;
            }
            //左右扩散,此时left和right指向不满足的情况
            while(left >= 0 && right <= n -1 && s.charAt(left) == s.charAt(right)) {
                --left;
                ++right;  
            }
			//判断以及更新结果集
            if(right - left - 1 > window) {
                window = right - left - 1;
                ans = s.substring(left + 1,right);
            }
        }
        return ans;
    }      
}

516. 最长回文子序列 — 中等题

leetcode链接

给你一个字符串 s ,找出其中最长的回文子序列,并返回该序列的长度。

子序列定义为:不改变剩余字符顺序的情况下,删除某些字符或者不删除任何字符形成的一个序列。

示例 1:

输入:s = "bbbab"
输出:4
解释:一个可能的最长回文子序列为 "bbbb" 。

示例 2:

输入:s = "cbbd"
输出:2
解释:一个可能的最长回文子序列为 "bb" 。

提示:

  • 1 <= s.length <= 1000
  • s 仅由小写英文字母组成
class Solution {
    public int longestPalindromeSubseq(String s) {
        //使用动规划进行求解
        int n = s.length();
        //dp[i][j]表示区间【i,j】的最长回文子序列的长度
        int[][] dp = new int[n][n];
        int res = 1;
        //初始化,只有一个字母的话,一定为回文串
        for (int i = 0; i < n; i++) {
            dp[i][i] = 1;
        }
        //动态更新
        for (int j = 1; j < n; j++) { //列
            char c1 = s.charAt(j);
            for(int i = j - 1; i >= 0; i--) { //行
                char c2 = s.charAt(i);
                if(c1 == c2) {
                    //如果c1和c2相等,则dp[i][j] = dp[i + 1][j - 1] + 2
                    dp[i][j] = dp[i + 1][j - 1] + 2;
                }else {
                    //如果不相等,则直接为dp[i + 1][j]和dp[i][j - 1]的最大值
                    dp[i][j] = Math.max(dp[i + 1][j],dp[i][j - 1]);
                }
            }
        }
        return dp[0][n - 1];
    }
}

131. 分割回文串 — 中等题

leetcode链接

给你一个字符串 s,请你将 s 分割成一些子串,使每个子串都是 回文串 。返回 s 所有可能的分割方案。

回文串 是正着读和反着读都一样的字符串。

示例 1:

输入:s = "aab"
输出:[["a","a","b"],["aa","b"]]

示例 2:

输入:s = "a"
输出:[["a"]]

提示:

  • 1 <= s.length <= 16
  • s 仅由小写英文字母组成
思路分析:

采用 回溯法 + 判断回文串来求解该问题

代码实现:
class Solution {
    List<List<String>> ans = new ArrayList<>();
    List<String> sub = new ArrayList<>();
    int n;
    StringBuilder sb;
    public List<List<String>> partition(String s) {
        sb = new StringBuilder(s);
        n = s.length();
        dfs(0);
        return ans;
    }

    private void dfs(int start) {
        if(start == n) { 
            //如果此时start移动到n的位置,说明s字符串全部分解为若干个回文子串,我们选择将sub加入结果集中
            ans.add(new ArrayList<>(sub));
            return;
        }

        for (int i = start; i < n; i++) {
            //首先判断sb字符串[start,i]位置是否为回文串,如果是,则继续递归判断
            if (judge(sb.substring(start,i + 1))) {
                sub.add(sb.substring(start,i + 1));
                dfs(i + 1);
                //回溯
                sub.remove(sub.size() - 1);
            }
        }
    }

    //判断是否为回文串的方法
    private boolean judge(String s) {
        int left = 0;
        int right = s.length() - 1;
        while (left < right) {
            if (s.charAt(left) != s.charAt(right)) {
                return false;
            }
            ++left;
            --right;
        }
        return true;
    }
}

132. 分割回文串 II — 困难题

leetcode链接

给你一个字符串 s,请你将 s 分割成一些子串,使每个子串都是回文。

返回符合要求的 最少分割次数

示例 1:

输入:s = "aab"
输出:1
解释:只需一次分割就可将 s 分割成 ["aa","b"] 这样两个回文子串。

示例 2:

输入:s = "a"
输出:0

示例 3:

输入:s = "ab"
输出:1

提示:

  • 1 <= s.length <= 2000
  • s 仅由小写英文字母组成
思路分析:

使用动态规划进行求解,我们可以利用最长回文子串中的dp(数组dp[i] [j]表示【i,j】区间是否为回文串),然后建立一个新的dp数组f[n]:

其中f[i]表示字符串到索引i位置分割成回文串的最少次数,首先我们初始化f[i] = i(初始化为最大值)

然后我们动态更新f数组的值:j ∈ 【1,n - 1】

如果dp[0][j]true: f[j] = 0
否则,我们遍历i ∈ [0 , j - 1] : 
如果dp[i + 1][j]true : f[i] = Math.min(f[j],f[i] + 1]
class Solution {
    public int minCut(String s) {
        int n = s.length();
        //定义第一个dp数组
        boolean[][] dp = new boolean[n][n];
        for(int i = 0; i < n; i++) {
            Arrays.fill(dp[i],true);
        }
        for(int i = n - 1; i >= 0; i--) {
            for(int j = i + 1; j < n; j++) {
                dp[i][j] = dp[i + 1][j - 1] && (s.charAt(i) == s.charAt(j));
            }
        }
        //定义第二个dp数组
        int[] f = new int[n];
        //初始化
        for(int i = 0; i < n; i++) {
            f[i] = i;
        }
        for(int j = 1; j < n; j++) {
            //如果【0,j】区间是回文的,直接赋值为0,无需切割
            if(dp[0][j]) {
                f[j] = 0;
            }else {
                for(int i = 0; i < j; i++) {
                    if(dp[i + 1][j]) {
                        f[j] = Math.min(f[j],f[i] + 1);
                    }
                }
            }
        }
        return f[n - 1];
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值