回文串问题
125. 验证回文串 — 简单题
给定一个字符串,验证它是否是回文串,只考虑字母和数字字符,可以忽略字母的大小写。
**说明:**本题中,我们将空字符串定义为有效的回文串。
示例 1:
输入: "A man, a plan, a canal: Panama"
输出: true
解释:"amanaplanacanalpanama" 是回文串
示例 2:
输入: "race a car"
输出: false
解释:"raceacar" 不是回文串
提示:
1 <= s.length <= 2 * 105
- 字符串
s
由 ASCII 字符组成
代码实现 — 使用双指针法
class Solution {
public boolean isPalindrome(String s) {
StringBuffer sb = new StringBuffer();
int length = s.length();
for (int i = 0; i < length; i++) {
char ch = s.charAt(i);
//使用Character的isLetterOrDigit()来判断其是否为数字或者字母
if (Character.isLetterOrDigit(ch)) {
sb.append(Character.toLowerCase(ch));
}
}
int n = sb.length();
int left = 0, right = n - 1;
while (left < right) {
if (sb.charAt(left) != sb.charAt(right)) {
return false;
}
++left;
--right;
}
return true;
}
}
5. 最长回文子串 — 中等题
给你一个字符串 s
,找到 s
中最长的回文子串。
示例 1:
输入:s = "babad"
输出:"bab"
解释:"aba" 同样是符合题意的答案。
示例 2:
输入:s = "cbbd"
输出:"bb"
示例 3:
输入:s = "a"
输出:"a"
示例 4:
输入:s = "ac"
输出:"a"
提示:
1 <= s.length <= 1000
s
仅由数字和英文字母(大写和/或小写)组成
思路分析:
这道题可以采用动态规划和左右扩散法进行求解:
其中动态规划法,我们可以定义一个二维的boolean数组dp[n] [n],其中dp[i] [j]表示表示[i,…,j]区间的子串是否为回文串,此时我们初始化:
-
只有一个字母一定为回文串,两个字母如果相等,也一定为回文串
for (int i = 0; i < n; i++) { dp[i][i] = true; } for (int i = 1; i < n; i++) { if (s.charAt(i) == s.charAt(i - 1)) { dp[i - 1][i] = true; } }
-
动态转移方程:如果如果【i + 1, j - 1】区间是回文串,并且此时i和j位置的值相等,则说明【i,j】为回文串
i f ( d p [ i + 1 ] [ j − 1 ] 并 且 s . c h a r A t ( i ) = = s . c h a r A t ( j ) ) d p [ i ] [ j ] = t r u e ; if (dp[i + 1][j - 1] 并且 s.charAt(i) == s.charAt(j)) \\ dp[i][j] = true; if(dp[i+1][j−1]并且s.charAt(i)==s.charAt(j))dp[i][j]=true;
然后我们定义一个最长回文子串的起始索引,以及其最长的长度,更新最后得到我们的结果集
而如果采取左右扩散法,就是以每一个字母作为中心点,向左右扩散,以满足回文串的要求
代码实现:
class Solution {
public String longestPalindrome(String s) {
int n = s.length();
if(n == 1) return s;
//表示[i,....,j]区间的子串是否为回文串
boolean[][] dp = new boolean[n][n];
String ans = "";
int begin = 0;
int maxLen = 1;
//初始化:只有一个字母一定为回文串,两个字母如果相等,也一定为回文串
for (int i = 0; i < n; i++) {
dp[i][i] = true;
}
for (int i = 1; i < n; i++) {
if (s.charAt(i) == s.charAt(i - 1)) {
dp[i - 1][i] = true;
begin = i - 1;
maxLen = 2;
}
}
//更新结果集:更新的区间的长度从2开始
for (int j = 2; j < n; j++) { //j ∈ [2 ---> n - 1]
for (int i = j - 2; i >= 0; i--) { //i ∈ [j - 1 ---> 0]
//如果【i + 1, j - 1】区间是回文串,并且此时i和j位置的值相等,则说明【i,j】为回文串
if (dp[i + 1][j - 1] && s.charAt(i) == s.charAt(j)) {
dp[i][j] = true;
}
if (dp[i][j] && (j - i + 1) > maxLen) {
begin = i;
maxLen = j - i + 1;
}
}
}
return s.substring(begin,begin + maxLen);
}
}
class Solution {
public String longestPalindrome(String s) {
//使用左右扩展法
int n = s.length();
int window = 0;
String ans = "";
for(int i = 0; i < n; i++) { //从0 ~ n,正常遍历
//左扩展
int left = i - 1;
while(left >= 0 && s.charAt(left) == s.charAt(i)) {
--left;
}
//右扩散
int right = i + 1;
while(right <= n - 1 && s.charAt(right) == s.charAt(i)) {
++right;
}
//左右扩散,此时left和right指向不满足的情况
while(left >= 0 && right <= n -1 && s.charAt(left) == s.charAt(right)) {
--left;
++right;
}
//判断以及更新结果集
if(right - left - 1 > window) {
window = right - left - 1;
ans = s.substring(left + 1,right);
}
}
return ans;
}
}
516. 最长回文子序列 — 中等题
给你一个字符串 s
,找出其中最长的回文子序列,并返回该序列的长度。
子序列定义为:不改变剩余字符顺序的情况下,删除某些字符或者不删除任何字符形成的一个序列。
示例 1:
输入:s = "bbbab"
输出:4
解释:一个可能的最长回文子序列为 "bbbb" 。
示例 2:
输入:s = "cbbd"
输出:2
解释:一个可能的最长回文子序列为 "bb" 。
提示:
1 <= s.length <= 1000
s
仅由小写英文字母组成
class Solution {
public int longestPalindromeSubseq(String s) {
//使用动规划进行求解
int n = s.length();
//dp[i][j]表示区间【i,j】的最长回文子序列的长度
int[][] dp = new int[n][n];
int res = 1;
//初始化,只有一个字母的话,一定为回文串
for (int i = 0; i < n; i++) {
dp[i][i] = 1;
}
//动态更新
for (int j = 1; j < n; j++) { //列
char c1 = s.charAt(j);
for(int i = j - 1; i >= 0; i--) { //行
char c2 = s.charAt(i);
if(c1 == c2) {
//如果c1和c2相等,则dp[i][j] = dp[i + 1][j - 1] + 2
dp[i][j] = dp[i + 1][j - 1] + 2;
}else {
//如果不相等,则直接为dp[i + 1][j]和dp[i][j - 1]的最大值
dp[i][j] = Math.max(dp[i + 1][j],dp[i][j - 1]);
}
}
}
return dp[0][n - 1];
}
}
131. 分割回文串 — 中等题
给你一个字符串 s
,请你将 s
分割成一些子串,使每个子串都是 回文串 。返回 s
所有可能的分割方案。
回文串 是正着读和反着读都一样的字符串。
示例 1:
输入:s = "aab"
输出:[["a","a","b"],["aa","b"]]
示例 2:
输入:s = "a"
输出:[["a"]]
提示:
1 <= s.length <= 16
s
仅由小写英文字母组成
思路分析:
采用 回溯法 + 判断回文串来求解该问题
代码实现:
class Solution {
List<List<String>> ans = new ArrayList<>();
List<String> sub = new ArrayList<>();
int n;
StringBuilder sb;
public List<List<String>> partition(String s) {
sb = new StringBuilder(s);
n = s.length();
dfs(0);
return ans;
}
private void dfs(int start) {
if(start == n) {
//如果此时start移动到n的位置,说明s字符串全部分解为若干个回文子串,我们选择将sub加入结果集中
ans.add(new ArrayList<>(sub));
return;
}
for (int i = start; i < n; i++) {
//首先判断sb字符串[start,i]位置是否为回文串,如果是,则继续递归判断
if (judge(sb.substring(start,i + 1))) {
sub.add(sb.substring(start,i + 1));
dfs(i + 1);
//回溯
sub.remove(sub.size() - 1);
}
}
}
//判断是否为回文串的方法
private boolean judge(String s) {
int left = 0;
int right = s.length() - 1;
while (left < right) {
if (s.charAt(left) != s.charAt(right)) {
return false;
}
++left;
--right;
}
return true;
}
}
132. 分割回文串 II — 困难题
给你一个字符串 s
,请你将 s
分割成一些子串,使每个子串都是回文。
返回符合要求的 最少分割次数 。
示例 1:
输入:s = "aab"
输出:1
解释:只需一次分割就可将 s 分割成 ["aa","b"] 这样两个回文子串。
示例 2:
输入:s = "a"
输出:0
示例 3:
输入:s = "ab"
输出:1
提示:
1 <= s.length <= 2000
s
仅由小写英文字母组成
思路分析:
使用动态规划进行求解,我们可以利用最长回文子串中的dp(数组dp[i] [j]表示【i,j】区间是否为回文串),然后建立一个新的dp数组f[n]:
其中f[i]表示字符串到索引i位置分割成回文串的最少次数,首先我们初始化f[i] = i(初始化为最大值)
然后我们动态更新f数组的值:j ∈ 【1,n - 1】
如果dp[0][j]为true: f[j] = 0
否则,我们遍历i ∈ [0 , j - 1] :
如果dp[i + 1][j]为true : f[i] = Math.min(f[j],f[i] + 1]
class Solution {
public int minCut(String s) {
int n = s.length();
//定义第一个dp数组
boolean[][] dp = new boolean[n][n];
for(int i = 0; i < n; i++) {
Arrays.fill(dp[i],true);
}
for(int i = n - 1; i >= 0; i--) {
for(int j = i + 1; j < n; j++) {
dp[i][j] = dp[i + 1][j - 1] && (s.charAt(i) == s.charAt(j));
}
}
//定义第二个dp数组
int[] f = new int[n];
//初始化
for(int i = 0; i < n; i++) {
f[i] = i;
}
for(int j = 1; j < n; j++) {
//如果【0,j】区间是回文的,直接赋值为0,无需切割
if(dp[0][j]) {
f[j] = 0;
}else {
for(int i = 0; i < j; i++) {
if(dp[i + 1][j]) {
f[j] = Math.min(f[j],f[i] + 1);
}
}
}
}
return f[n - 1];
}
}