[BZOJ 4813][Cqoi2017]小Q的棋盘:TreeDP

2 篇文章 0 订阅

点击这里查看原题

简单的TreeDP。f[i][j][0]表示从i点出发走j步不需要回到起点的最大点数,f[i][j][1]表示需要回到起点的最大点数。

/*
User:Small
Language:C++
Problem No.:4813
*/
#include<bits/stdc++.h>
#define ll long long
#define inf 999999999
using namespace std;
const int M=105;
int v,n,fir[M],f[M][M][2],tot;
struct edge{
    int v,nex;
}e[M<<1];
void add(int u,int v){
    e[++tot]=(edge){v,fir[u]};
    fir[u]=tot;
}
void dfs(int u,int fa){
    f[u][0][0]=f[u][0][1]=1;
    for(int i=fir[u];i;i=e[i].nex){
        int v=e[i].v;
        if(v==fa) continue;
        dfs(v,u);
        for(int j=n;j>=0;j--)
            for(int k=0;k<j;k++){
                if(j-k>1){
                    f[u][j][1]=max(f[u][j][1],f[u][j-k-2][1]+f[v][k][1]);
                    f[u][j][0]=max(f[u][j][0],f[u][j-k-2][0]+f[v][k][1]);
                }
                f[u][j][0]=max(f[u][j][0],f[u][j-k-1][1]+f[v][k][0]);
            }
    }
    for(int i=1;i<=n;i++){
        f[u][i][0]=max(f[u][i][0],f[u][i-1][0]);
        f[u][i][1]=max(f[u][i][1],f[u][i-1][1]);
    }
}
int main(){
    freopen("data.in","r",stdin);//
    scanf("%d%d",&v,&n);
    for(int i=1;i<v;i++){
        int u,v;
        scanf("%d%d",&u,&v);
        add(u,v);
        add(v,u);
    }
    dfs(0,0);
    printf("%d\n",f[0][n][0]);
    return 0;
}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值