几种混沌系统混沌模型

本文深入探讨了混沌系统的核心概念,包括logistic映射、细胞神经网络、Henon映射及洛伦兹系统的数学模型与混沌状态。揭示了混沌吸引子的形态与形成条件,如logistic映射的混沌区间、细胞神经网络的超混沌状态、Henon映射的维数条件以及洛伦兹系统的参数阈值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

logistic映射混沌系统
函数系统方程:
在这里插入图片描述
当满足以下条件时:
1<x0<1
3.57<μ<4
Logistic函数工作于混沌状态。
混沌图像:

细胞神经网络(超)混沌系统
神经细胞网络理论是一种局部互连的神经网络系统。该系统具有极其复杂的动力学行为,能够实时、高速、并行处理信号,且易于超大规模电路的实现。
细胞神经网络的状态方程:
在这里插入图片描述
在这里插入图片描述
由①②得五阶全互连CNN模型:
在这里插入图片描述
产生(超)混沌条件:根据Lyapunov指数判断混沌的存在性,其中至少有一个Lyapunov指数为正,就可以说明该系统为混沌系统。若存在正的Lyapunov指数个数大于等于2时,就说明该系统处于超混沌状态。
部分混沌吸引子:
在这里插入图片描述
在这里插入图片描述
Henon映射混沌系统
厄农映射(英语:Hénon map)是一种可以产生混沌现象的离散时间动态系统。
迭代表达形式为:
在这里插入图片描述
产生(超)混沌条件:
w表示维数,当w>2时,该系统处于超混沌状态,被称为广义Henon映射,当w=2时,为混沌状态,该系统为著名的Henon映射。
部分混沌吸引子:
在这里插入图片描述
在这里插入图片描述
洛伦兹混沌系统
函数系统方程:
在这里插入图片描述
当满足以下条件时(常用取值组合):
P = 10
Ra = 28
b = 8/3
此函数工作于混沌状态。
洛伦兹混沌吸引子:
在这里插入图片描述
完整仿真代码可以关注以下公众号回复”混沌系统“可获得,欢迎一起学习讨论。
在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值