常见混沌系统—Chen模型

混沌是非线性动力系统的固有特性,是非线性系统普遍存在的现象。

概念

1999年,美国休斯顿大学陈关荣教授发现了一个新的混沌吸引子——Chen系统,即陈氏混沌系统,它与Lorenz系统类似,但不拓扑等价而且更复杂。Chen系统描述如下:
{ d x d t = a ( y − x ) d y d t = ( c − a ) x − x z + c y d z d t = x y − b z {} \left\{ \begin{array}{lr} \frac{dx}{dt} =a(y-x) \\ \frac{dy}{dt}=(c-a) x-xz+cy \\ \frac{dz}{dt}=xy-bz \end{array} \right . {} dtdx=a(yx)dtdy=(ca)xxz+cydtdz=xybz
陈氏混沌系统(Chen)为典型的混沌系统,当a=35,b=3,c=28时,系统呈现混沌状态。

混沌图像

陈氏混沌吸引子如图所示

在这里插入图片描述

由图可见,经过长时间运行后,系统只在三维空间的一个有限区域内运动,系统在此区域中的运动是混沌状态。我们从两个靠的很近的初值条件出发(yt只相差0.001)给出了x(t)轨道的演化图如下
在这里插入图片描述

由图可见,随着时间的演化,可以看到原本靠得很近的轨道迅速地分开,最后两条轨道变得毫无关联。

实验代码(python)
import numpy as np
import matplotlib.pyplot as plt
#绘制三维图像
import mpl_toolkits.mplot3d as p3d


'''
Chen吸引子生成函数
参数为三个初始坐标,三个初始参数,迭代次数
返回三个一维数组(坐标)
'''
def Chen(x0,y0,z0,a,b,c,T):
  h=0.001
  x=[]
  y=[]
  z=[]
  for t in range(T):
    xt=x0+h*(a*(y0-x0))
    yt=y0+h*((c-a)*x0-x0*z0+c*y0)
    zt=z0+h*(x0*y0-b*z0)

    #x0、y0、z0统一更新
    x0,y0,z0=xt,yt,zt
    x.append(x0)
    y.append(y0)
    z.append(z0)

  return x,y,z

def main():
  #设定参数
  a=35
  b=3
  c=28
  #迭代次数
  T=10000
  #设初值
  x0=0
  y0=1
  z0=0
  # fig=plt.figure()
  # ax=p3d.Axes3D(fig)
  x,y,z=Chen(x0,y0,z0,a,b,c,T)
  ax=plt.subplot(121,projection="3d")
  ax.scatter(x,y,z,s=5)
  ax.set_xlabel('x(t)')
  ax.set_ylabel('y(t)')
  ax.set_zlabel('z(t)')
  ax.set_title('x0={0} y0={1} z0={2}'.format(x0,y0,z0))
  # plt.axis('off')
  #消除网格

  ax.grid(False)
  #初值微小的变化
  x0=0
  y0=1.001
  z0=0
  xx,yy,zz=Chen(x0,y0,z0,a,b,c,T)
  ax=plt.subplot(122,projection="3d")
  ax.scatter(xx,yy,zz,s=5)
  ax.set_xlabel('x(t)')
  ax.set_ylabel('y(t)')
  ax.set_zlabel('z(t)')
  ax.set_title('x0={0} y0={1} z0={2}'.format(x0,y0,z0))
  ax.grid(False)
  plt.show()

  t=np.arange(0,T)
  plt.scatter(t,x,s=1)
  plt.scatter(t,xx,s=1)
  plt.show()


if __name__=='__main__':
  main()

参考

常见混沌系统—Lorenz模型

陈氏混沌系统

智能网联汽车的安全员高级考试涉及多个方面的专业知识,包括但不限于自动驾驶技术原理、车辆传感器融合、网络安全防护以及法律法规等内容。以下是针对该主题的一些核心知识点解析: ### 关于智能网联车安全员高级考试的核心内容 #### 1. 自动驾驶分级标准 国际自动机工程师学会(SAE International)定义了六个级别的自动驾驶等级,从L0到L5[^1]。其中,L3及以上级别需要安全员具备更高的应急处理能力。 #### 2. 车辆感知系统的组成与功能 智能网联车通常配备多种传感器,如激光雷达、毫米波雷达、摄像头和超声波传感器等。这些设备协同工作以实现环境感知、障碍物检测等功能[^2]。 #### 3. 数据通信与网络安全 智能网联车依赖V2X(Vehicle-to-Everything)技术进行数据交换,在此过程中需防范潜在的网络攻击风险,例如中间人攻击或恶意软件入侵[^3]。 #### 4. 法律法规要求 不同国家和地区对于无人驾驶测试及运营有着严格的规定,考生应熟悉当地交通法典中有关自动化驾驶部分的具体条款[^4]。 ```python # 示例代码:模拟简单决策逻辑 def decide_action(sensor_data): if sensor_data['obstacle'] and not sensor_data['emergency']: return 'slow_down' elif sensor_data['pedestrian_crossing']: return 'stop_and_yield' else: return 'continue_driving' example_input = {'obstacle': True, 'emergency': False, 'pedestrian_crossing': False} action = decide_action(example_input) print(f"Action to take: {action}") ``` 需要注意的是,“橙点同学”作为特定平台上的学习资源名称,并不提供官方认证的标准答案集;建议通过正规渠道获取教材并参加培训课程来准备此类资格认证考试。
评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

z2bns

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值