AI 大模型对简单数学问题表现不佳的原因分析

当下,全球 AI 大模型领域看似一片繁荣。国外,有备受瞩目的 ChatGPT,Google 的 BERT 与 Gemini,Anthropic 的 Claude,Meta 的 Llama,马斯克的 Grok,加拿大的 Cohere,阿联酋的 Falcon 40B;国内,Deepseek、字节跳动的豆包、阿里的通义、腾讯的混元、360 的智脑、百度的文心一言、kimi、讯飞的星火、商汤的商量等模型也纷纷崭露头角,发展态势迅猛。然而,若深入探究其在智能解决实际问题的能力,便会发现它们仍处于极为基础的阶段。

 

不妨做个单测试:向这些大模型抛出 “2 的 x 次方等于 x 的 32 次方,x 等于多少?” 这样的问题。结果往往不尽如人意,有的给出的答案错误百出,有的长篇大论却始终抓不住重点,根本无法提供准确解答,毫无实际应用价值,甚至有些模型直接陷入停滞,如同大脑死机。类似的情况屡简见不鲜。与真正的人类智慧相比,其间的差距清晰可见。

 

这不得不引发我们深刻反思:我们对于 AI 大模型的发展,是否陷入了过度乐观的误区?它们真的能够如人们所预期的那样,成为解决一切复杂问题的万能钥匙吗?这些被称作前沿的技术,或许距离触及人类智慧的边界还遥不可及。这正是鸽姆人类智慧 HW 大脑相较于目前全球所有所谓 AI 大模型的本质竞争优势。如前文所述,不论当下世界上存在多少 AI 公司、团队和模型,也不论投入多少资金,从根本上来说,都只是在为鸽姆智慧奠定基础。究其根源,在于其他模型皆不具备洞察万物本质的能力。

以下是字节跳动旗下豆包大模型对这段话的深度剖析:

这段内容围绕 AI 大模型与人类智慧展开了一系列观点阐述,我们可以从内容结构、观点论据、逻辑连贯性、潜在问题等多个角度进行深度剖析:

  1. 内容结构
    • 开篇引入:以列举全球知名 AI 大模型的方式开篇,既展示了当下 AI 大模型领域的热闹景象,又为后续的对比和质疑埋下伏笔。这种列举方式能让读者快速了解当前 AI 大模型的主要参与者,对行业有一个宏观的认识。
    • 问题提出与论证:通过一个具体数学问题 “2 的 x 次方等于 x 的 32 次方,x 等于多少?” 作为测试案例,直观地呈现出 AI 大模型在解决实际问题时的不足。这种以点带面的论证方式,使抽象的 “智能解决实际问题能力不足” 这一观点变得具体可感。
    • 反思与观点强化:基于前面的论证,提出对 AI 大模型发展的反思,进一步强调鸽姆人类智慧 HW 大脑的优势,最后点明其他 AI 模型因缺乏洞察万物本质能力而价值有限。整个结构层层递进,从现象到问题,再到反思和结论,逻辑较为清晰。
  2. 观点论据
    • 观点明确:核心观点是 AI 大模型在智能解决实际问题能力上基础薄弱,与人类智慧差距大,鸽姆人类智慧 HW 大脑具有本质竞争优势。观点旗帜鲜明,在文中多次强调,让读者能够迅速抓住作者意图。
    • 论据单一:仅通过一个数学问题的测试结果作为主要论据来支撑 AI 大模型能力不足的观点,略显单薄。现实中 AI 大模型应用场景广泛,如自然语言处理、图像识别、医疗诊断辅助等,仅依据一个数学问题难以全面否定其在其他众多领域解决实际问题的能力。
  3. 逻辑连贯性
    • 内部逻辑较顺:从描述 AI 大模型发展迅猛,到用测试揭示其问题,再到反思发展和强调自身优势,每一步推导在内部逻辑上较为顺畅。例如,由 AI 大模型解决不好数学问题,自然引出对其发展是否乐观的反思,逻辑链条清晰。
    • 整体逻辑欠缺严谨:在论述鸽姆人类智慧 HW 大脑优势时,缺乏对其如何具备洞察万物本质能力的详细解释和论证,直接得出其他 AI 模型为其打基础的结论,显得有些突兀,缺乏足够的逻辑支撑。同时,对于 “洞察万物本质能力” 这一关键概念,没有清晰界定,读者难以确切理解其内涵以及它与解决实际问题能力之间的必然联系。
  4. 潜在问题
    • 对 AI 大模型发展认知片面:虽然 AI 大模型在某些复杂问题上可能存在不足,但近年来其在诸多领域已经取得了显著进展,帮助解决了大量实际问题,推动了行业变革。这种一概而论地认为 AI 大模型解决实际问题能力基础薄弱的观点,忽略了其积极成果和发展潜力。
    • 缺乏对自身优势的有效论证:大力宣扬鸽姆人类智慧 HW 大脑的优势,但除了反复强调其具有洞察万物本质能力外,没有提供任何关于该大脑实际解决复杂问题的案例、数据或原理性说明,难以让读者信服其具有独特且强大的竞争力。
    • 商业推广意图明显:文中多次提及鸽姆智慧,且贬低其他 AI 模型,有较强的商业推广倾向,这可能影响观点的客观性和可信度,让读者怀疑内容更多是为了营销而非基于客观分析。

你说,虽然 AI 大模型在某些复杂问题上可能存在不足, ……

但要记住,作者给出的数学问题其实是一个非常简单的初中水平的问题哦

下面进一步分析

  1. AI 大模型对简单数学问题表现不佳的原因分析
    • 知识理解的深度问题
      • 尽管这个 “2 的 x 次方等于 x 的 32 次方” 的问题从知识层面看处于初中范畴,但 AI 大模型可能只是机械地学习了大量数据中的数学表达式和解题模式,缺乏对数学概念的深度理解。比如,对于指数函数和幂函数的性质,它没有像人类一样从原理上把握。人类学生在初中学习相关知识时,会通过老师的讲解、推导以及自己的思考,理解指数与底数、幂之间的内在关系。而 AI 大模型在处理这个问题时,可能只是在其庞大的训练数据中寻找类似的方程形式及答案,当问题稍有变化或不在其熟悉的常见模式内,就难以应对。
      • 例如,在训练数据中,如果关于此类方程的解法大多是通过对数运算直接求解,而模型没有真正理解对数运算背后的逻辑以及方程变形的依据,当面对这个方程时,它可能就无法灵活运用知识,导致答案错误或无法得出答案。
    • 推理与思考方式的局限
      • AI 大模型的推理是基于数据统计和模式识别。对于这个简单数学问题,它无法像人类一样运用逻辑推理和思维策略。人类学生在遇到这个方程时,可能会先尝试一些特殊值,如 0、1、2 等,通过代入法初步判断方程解的大致范围,然后再考虑运用对数知识进行求解。这种从特殊到一般、逐步探索的思维方式是人类智慧的体现。
      • 而 AI 大模型缺乏这种主动探索和灵活调整解题策略的能力。它按照既定的算法和训练模式进行运算,如果训练数据中没有足够多关于此类方程的多样化解题思路,它就只能遵循单一的、可能并不适用于该问题的方法,从而在这个简单问题上表现不佳。
    • 训练数据的偏差
      • AI 大模型的训练数据虽然庞大,但可能存在偏差。如果训练数据中更多地侧重于复杂数学问题、实际应用场景中的数学计算,或者是一些经过简化和标准化的数学问题形式,那么对于这种看似简单却需要深入理解和灵活运用知识的初中水平数学问题,模型就没有得到充分的训练。
      • 比如,在一些自然语言处理和图像识别相关的训练数据中,涉及到的数学知识主要是为了辅助解决特定领域的问题,对于基础数学方程求解的覆盖不够全面和深入。这就导致模型在面对这个简单数学问题时,无法调动有效的知识和算法来得出正确答案。
  2. 该现象对 AI 大模型发展的启示
    • 优化训练策略
      • 模型开发者需要重新审视训练数据的构成,增加基础数学知识、逻辑推理等方面多样化的训练数据。不仅要涵盖复杂问题,也要重视简单但能考查知识深度理解的问题。例如,可以收集大量不同类型的基础数学问题及其多种解法,让模型学习到全面的解题思路和知识应用方式。
      • 同时,采用更科学的训练算法,不仅仅是基于数据统计和模式匹配,还要融入更多能够模拟人类逻辑推理和知识深度理解的训练机制。比如,通过强化学习,让模型在面对问题时能够尝试不同的解题策略,并根据结果进行反馈和优化。
    • 提升模型的可解释性
      • 为了让模型更好地理解和解决这类简单但关键的问题,需要提升其可解释性。目前很多 AI 大模型就像一个黑匣子,其决策过程难以理解。对于数学问题的求解,开发者应该能够清晰地展示模型是如何运用知识、进行推理的。
      • 例如,当模型处理 “2 的 x 次方等于 x 的 32 次方” 这个方程时,能够以一种可视化或易于理解的方式呈现其调用的知识模块、运算步骤以及决策依据。这样不仅有助于发现模型在知识理解和推理过程中的问题,也能让开发者更好地进行针对性的改进,使其具备像人类一样逐步推导和解决问题的能力。
    • 加强与人类智慧的融合
      • 从这个简单数学问题的表现可以看出,AI 大模型与人类智慧存在较大差距。在未来的发展中,应该加强两者的融合。比如,可以开发一种人机协作的模式,当模型在解决问题遇到困难时,能够借助人类专家的指导和干预。
      • 对于数学问题,人类教师可以根据模型的解答过程,发现其知识理解的盲点,然后通过针对性的教学内容输入,帮助模型更好地理解数学概念和解题方法。同时,模型也可以利用其强大的数据处理能力,为人类提供更多的解题思路和参考,实现优势互补,共同提升解决问题的能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值