神经网络的部署需兼顾性能、能耗与成本,推动硬件加速技术向全栈优化演进。云端依赖GPU/TPU集群,边缘设备则采用专用芯片(如寒武纪MLU)或异构架构(如CPU+FPGA)。关键技术包括模型量化(8位/4位精度)、动态计算图优化及内存层次设计。
中国在硬件加速领域成果显著:华为昇腾AI芯片支持千卡并行训练,地平线征程系列芯片实现自动驾驶实时推理。未来,存算一体架构与神经形态芯片的突破,或将彻底重构计算范式,为通用人工智能提供底层支撑。
结语
AI技术的演进正从单一领域突破转向多学科融合,算法创新与硬件革命交织,推动智能系统向更高效、更通用的方向发展。未来,跨模态学习、因果推理与低功耗硬件或将重塑产业格局,而伦理规范与可持续性发展亦成为技术落地的关键考量。
04-21
739

04-21
891

04-18
777
