7-14 最小生成树的唯一性

本文介绍了一种计算带权无向图最小生成树总权重的方法,并通过对比次小生成树权重来判断最小生成树的唯一性。采用Prim算法找到最小生成树,并通过额外步骤确定次小生成树权重。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

给定一个带权无向图,如果是连通图,则至少存在一棵最小生成树,有时最小生成树并不唯一。本题就要求你计算最小生成树的总权重,并且判断其是否唯一。

输入格式:

首先第一行给出两个整数:无向图中顶点数 N)和边数 M。随后 M 行,每行给出一条边的两个端点和权重,格式为“顶点1 顶点2 权重”,其中顶点从 1 到N 编号,权重为正整数。题目保证最小生成树的总权重不会超过 230

输出格式:

如果存在最小生成树,首先在第一行输出其总权重,第二行输出“Yes”,如果此树唯一,否则输出“No”。如果树不存在,则首先在第一行输出“No MST”,第二行输出图的连通集个数。

输入样例 1:

5 7
1 2 6
5 1 1
2 3 4
3 4 3
4 1 7
2 4 2
4 5 5

输出样例 1:

11
Yes

输入样例 2:

4 5
1 2 1
2 3 1
3 4 2
4 1 2
3 1 3

输出样例 2:

4
No

输入样例 3:

5 5
1 2 1
2 3 1
3 4 2
4 1 2
3 1 3

输出样例 3:

No MST
2

思路:我们可能先判断连通性,由于结点数比较少,可以通过dfs直接判断连通块的个数,对于最小生成树的唯一性,我们可以通过求出次小生成的权值,在于最小生成树的权值进行比较即可。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
#include <algorithm>
#include <set>
#include <map>
#include <cmath>
using namespace std;
const int maxn=550;

int vis[maxn];
const long long int inf=0x3f3f3f3f3f3f3f;
int G[maxn][maxn];
vector<int> v[maxn];
int fa[maxn];
long long int dis[maxn];
long long int pa[maxn][maxn];
bool used[maxn][maxn];
int n,m;
void dfs(int x)
{
    if(vis[x]) return ;
    vis[x]=1;
    for(int i=0; i<v[x].size(); i++)
    {
        dfs(v[x][i]);
    }
}
long long int prim(int x)
{
    memset(fa,0,sizeof(fa));
    memset(vis,0,sizeof(vis));
    memset(pa,0,sizeof(pa));
    memset(used,false,sizeof(used));
    for(int i=1; i<=n; i++)
    {
        dis[i]=G[x][i];
        fa[i]=x;
    }
    vis[x]=1;
    long long int ans=0;

    int cnt=0;
    int idx=x;
    for(int ka=1; ka<=n-1; ka++)
    {
        long long int maxx=inf;
        idx=0;
        for(int i=1; i<=n; i++)
        {
            if(!vis[i]&&dis[i]<maxx)
            {
                maxx=dis[i];
                idx=i;
            }
        }
        ans+=dis[idx];
        vis[idx]=1;
        used[idx][fa[idx]]=used[fa[idx]][idx]=1;
        for(int i=1; i<=n; i++)
        {
            if(vis[i]&&i!=idx )
            {
                pa[idx][i]=pa[i][idx]=max(dis[idx],pa[i][fa[idx]]);
            }
            else
            {
                if(dis[i]>G[idx][i])
                {
                    fa[i]=idx;
                    dis[i]=G[idx][i];
                }
            }
        }
    }
    return ans;
}
long long int second_tree(long long int t)
{
    long long int ans=inf;
    for(int i=1; i<=n; i++)
    {
        for(int j=1; j<=n; j++)
        {
            if(i!=j&&used[i][j]==0)
                ans=min(ans,t+G[i][j]-pa[i][j]);
        }
    }
    return ans;
}
int main()
{
    cin>>n>>m;
    memset(vis,0,sizeof(vis));
    memset(G,inf,sizeof(G));

    for(int i=0; i<m; i++)
    {
        int x,y,d;
        cin>>x>>y>>d;
        G[x][y]=G[y][x]=d;
        v[x].push_back(y);
        v[y].push_back(x);
    }
    int cnt=0;
    for(int i=1; i<=n; i++)
    {
        if(vis[i]) continue;
        cnt++;
        dfs(i);
    }
    if(cnt>1)
    {
        cout<<"No MST"<<endl;
        cout<<cnt<<endl;
        return 0;
    }
    long long int tree=prim(1);
    long long int t2=second_tree(tree);
    cout<<tree<<endl;
    if(t2!=tree) cout<<"Yes"<<endl;
    else cout<<"No"<<endl;
}


### 关于最小生成树唯一性的理论知识 #### 最小生成树定义及其性质 对于无向连通图 \( G=(V,E) \),\( G \) 的所有生成树当中边的值之和最小的生成树称为 \( G \) 的最小生成树(Minimum Spanning Tree, MST)。需要注意的是,最小生成树一定唯一;也就是说,可能存在多棵同的最小生成树具有相同的总重[^2]。 #### 最小生成树唯一性条件 如果无向连通图中的每条边都拥有独一无二的重,则该存在唯一最小生成树。这是因为,在构建过程中每次选取当前未加入到生成树集合中且重最低的一条边时,由于存在两条相同重的候选边可供选择,因此最终形成的最小生成树结构必然固定变。 另外一种情况是当给定形恰好含有 \( |V|-1 \) 条边的时候,此时也只有一种方式形成一棵连接全部顶点而构成回路的子,即为唯一最小生成树。 #### 非唯一情况下证明思路概述 假设在一个无向中有两颗同形态但同样满足最小代价要求的生成树 T1 和 T2 。那么在这两个解之间必定至少有一条公共路径 P ,因为它们都是覆盖整个顶点集 V 的连通组件。考虑沿着这条共享路径逐步替换非共有的部分直到两者完全一致为止: - 如果在整个转换过程里始终保持着新的中间状态仍然是合法的生成树,并且保持了原有的最优成本特性; - 或者能够找到某个时刻违反上述任一前提,则可以得出结论说原假设有误——实际上并存在两种独立又同等优秀的解决方案。 然而值得注意的是,以上讨论仅适用于理想状况下的理论分析框架内有效。实际应用环境中可能会遇到更多复杂因素影响具体实例的表现形式。 ```python def is_unique_mst(graph): """ 判断一个重的无向连通图是否存在唯一最小生成树 参数: graph (dict): 的数据结构表示 {node: [(adjacent_node, weight)]} 返回: bool: 是否唯一MST """ # 获取所有的边以及对应的重 edges = [] for u in graph: for v, w in graph[u]: if u < v: # 只记录一次双向边 edges.append((w, u, v)) sorted_edges = sorted(edges) unique_weights = all(sorted_edges[i][0]!=sorted_edges[i+1][0] for i in range(len(sorted_edges)-1)) num_vertices = len(graph) exact_num_of_edges = len(edges)==num_vertices-1 return unique_weights or exact_num_of_edges ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值