进阶实验6-3.6 最小生成树的唯一性 (35 分)||1016 Uniqueness of MST (35 分)

陈姥姥数据结构学习与实验指导的图章节的最后一个题,我以为日常想想就可以写了,结果想了很久都没想到,然后百度了一下,居然发现有一篇校友的论文完美的解决了这个题,我就复现了论文里的方法。(ps:最小生成树是否唯一 吴宇亮,孔凡龙)

我用的是以kruskal算法为基础,也就是论文里的第二个方法。

思路:kruskal算法每次都是加入权值最小的边,但是要保证加入的边的两个端点在不同的集合里。关键点是:在加入边的过程中有可能有两条最小权值且连接相同集合的边(比如边E1的权值为3是最小的权值连接集合A和B,边E2的权值也为3也连接集合A和B),不管加入哪一条边都会生成最小生成树,且这两天最小生成树是不完全一样的。

我先贴判断最小生成树是否唯一的代码描述再贴整个题的代码:

bool kruskal_is_unique(int n,int m)//n是顶点数,m是边数
{
	int i,j,faA,faB,root1,root2;
	for(i=1; i<=n; i++)//初始化,图中每个顶点自成一个集合
		father[i] = -1;
	sort(E,E+m,cmp);//给所有的边按权从小到大排序
	for(i=0; i<m; i++)//按权值从小到大枚举边
	{
		faA = findFather(E[i].v1); faB = findFather(E[i].v2);//找寻边两个端点的所属集合
		if(faA!=faB)//保证边的两个顶点不在同一个集合内
		{
			for(j=i+1; j<m; j++)//找后面与它权值相等且连接相同集合的边
			{
				if(E[i].weight==E[j].weight)
				{
					root1 = findFather(E[j].v1); root2 = findFather(E[j].v2);
					if((root1==faA&&root2==faB)||(root1==faB&&root2==faA))
						return false;
				}
				else break;//如果权值不相等的话可以提前跳出循环了,不需要继续比对了
			}
			father[faA] = faB;//合并两个集合
		}
	}
	return true;//如果没有发现MST不唯一的情况,则MST唯一
}

为了便于理解我把求最小生成树的函数和判断最小生成树是否唯一的函数分开写,实际上可以在求最小生成树的过程中设置一个flag变量,只要确认是不唯一的话就无需再进行唯一性判断了。

#include<stdio.h>
#include<algorithm>
#define MAXV 505
#define MAXE 10000000
#define INF 10000000
using namespace std;
int n,G[MAXV][MAXV];
int father[MAXV];
int findFather(int x)
{
	if(father[x]<0) return x;
	else
		return father[x] = findFather(father[x]);
}
struct edge
{
	int v1,v2;
	int weight;
}E[MAXE];
int cmp(edge a,edge b)
{
	return a.weight<b.weight;
}
int kruskal(int n, int m)
{
	int i,faA,faB;
	int ans = 0, Num_Edge = 0;
	for(i=1; i<=n; i++)
		father[i] = -1;
	sort(E,E+m,cmp);
	for(i=0; i<m; i++)//枚举边
	{
		faA = findFather(E[i].v1); faB = findFather(E[i].v2);
		if(faA!=faB)
		{
			father[faA] = faB;
			ans += E[i].weight;
			Num_Edge++;
			if(Num_Edge == n-1) break;
		}
	}
	if(Num_Edge!=n-1) return -1;
	else
		return ans;
}
bool kruskal_is_unique(int n,int m)//n是顶点数,m是边数
{
	int i,j,faA,faB,root1,root2;
	for(i=1; i<=n; i++)//初始化,图中每个顶点自成一个集合
		father[i] = -1;
	sort(E,E+m,cmp);//给所有的边按权从小到大排序
	for(i=0; i<m; i++)
	{
		faA = findFather(E[i].v1); faB = findFather(E[i].v2);
		if(faA!=faB)//保证边的两个顶点不在同一个集合内
		{
			for(j=i+1; j<m; j++)//找后面与它权值相等且连接相同集合的边
			{
				if(E[i].weight==E[j].weight)
				{
					root1 = findFather(E[j].v1); root2 = findFather(E[j].v2);
					if((root1==faA&&root2==faB)||(root1==faB&&root2==faA))
						return false;
				}
				else break;//如果权值不相等的话可以直接跳出循环了,不需要继续比对了
			}
			father[faA] = faB;//合并两个集合
		}
	}
	return true;//如果没有发现MST不唯一的情况,则MST唯一
}
int main()
{
	int m,i,j,v1,v2,weight,faA,faB;
	scanf("%d %d",&n,&m);
	for(i=1; i<=n; i++)//集合初始化
		father[i] = -1;
	for(i=1; i<=n; i++)//图的初始化
		for(j=1; j<=n; j++)
			G[i][j] = INF;
	for(i=0; i<m; i++)
	{
		scanf("%d%d%d",&v1,&v2,&weight);
		G[v1][v2] = weight;
		G[v2][v1] = weight;
		E[i].v1 = v1; E[i].v2 = v2; E[i].weight = weight;
		faA = findFather(v1); faB = findFather(v2);
		if(faA!=faB)
		{
			father[faA] = faB;
		}
	}
	int count = 0;
	for(i=1; i<=n; i++)
	{
		if(father[i]==-1) count++;
	}
	if(count>1)
	{
		printf("No MST\n");
		printf("%d",count);
		return 0;
	}
	int ans = kruskal(n,m); bool flag = kruskal_is_unique(n,m);
	if(ans!=-1&&flag==true)
	{
		printf("%d\n",ans);
		printf("Yes\n");
		return 0;
	}
	else if(ans!=-1&&flag==false)
	{
		printf("%d\n",ans);
		printf("No\n");
		return 0;
	}
}

 

  • 5
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: 最小生成树的独特性在于,它是连接所有节点的最小权重的树形结构。这意味着,对于给定的图,最小生成树是唯一的,因为它是基于图中边的权重和拓扑结构的。如果有两个不同的最小生成树,那么它们的权重和拓扑结构必须是相同的,否则它们就不是最小生成树。因此,最小生成树的独特性是由图的特性所决定的。 ### 回答2: 最小生成树MST)是一个有权无向图中的一种最小权重生成树。在图中只存在一个MST集,这就是MST唯一性MST唯一性是由两个基本性质决定的:割定理和权重不相等原则。 割定理:一条边e是图G的一组定理的一部,当且仅当e在图的任意MST中是轻边。根据割定理,我们可以证明一个图的MST集合中包含着一组定理,这个定理可以将图划成两块(S, V-S),其中S是V的子集,也就是说,将图成了一个项集S和一个项集V-S。而出现在子集Hi和Hj中的边,一定不会同时出现在MST中。因为这会导致环的出现,并使得生成树的权值不是最小。 权重不相等原则:如果两条边的权重不相等,一条较轻的边拥有优先权。在图的MST中,比较轻的边先被选中,而重边则被放弃。因此,生成的树具有唯一性,它不受选择顺序的影响。 总之,MST唯一性可通过两个基本性质来解释。MST唯一性对于很多算法问题来说都是非常重要的,因为它确保了结果的正确性和可重复性。例如,在电信网络普及的时代,MST常被用来寻找通信网络中的最优路径,因为可以通过生成树来解决这个问题。 ### 回答3: 最小生成树是一种表示连接无向带权图中所有顶点的最小边集的算法。它的想法是选择连接这些节点的最小权重边而不形成环。 在一个图形中,可能存在多个不同的生成树。这是由于生成树只是图形中可能的许多树之一。但是最小生成树具有独特性,这意味着一个给定图形的任何两个最小生成树都将包含相同数量的边,具有相同的总权重和相同的结构。 证明最小生成树唯一性可以通过矛盾法来证明。设存在两个不同的最小生成树,可以假设它们之间存在一组边不同的点组合。我们选择这些边可以作为一组割边从一个树中删除,并添加到另一个树中去。这样得到的新图仍然要求连接所有的节点,但是总权重不会因此改变。根据割边的定义,新图中的每一组割边必须包含一条链接树之间的边。因此,我们可以在原来的树和新的树之间找到一条边,它只出现在一个树中,不会出现在另一个树中。这条边可以用来创建一个环,进而将此环内的所有边从新树中进行剪切。这样就得到了一棵比原来的树更小的,但仍然是最小生成树,这与前提相矛盾。因此我们可以得出最小生成树唯一性最小生成树唯一性是它的一个重要性质,它让我们不用担心算法的输出结果可能不止一个。它也为一些具有证明要求的应用提供了支持,例如在网络设计和路由算法中。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值