题目:
给你一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。
题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。
请 不要使用除法,且在 O(n) 时间复杂度内完成此题。
示例 1:
输入: nums = [1,2,3,4]
输出: [24,12,8,6]
示例 2:
输入: nums = [-1,1,0,-3,3]
输出: [0,0,9,0,0]
提示:
2 <= nums.length <= 10的5次方
-30 <= nums[i] <= 30
保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内
进阶:你可以在 O(1) 的额外空间复杂度内完成这个题目吗?( 出于对空间复杂度分析的目的,输出数组 不被视为 额外空间。)
解题思路:
在 productExceptSelf()
方法中,创建两个辅助数组 leftProducts
和 rightProducts
,分别存储每个元素左侧和右侧的乘积。然后,将左右乘积相乘得到最终结果数组 result
。
class Solution {
public int[] productExceptSelf(int[] nums) {
int n = nums.length;
int[] result = new int[n];
int[] leftProducts = new int[n];
int[] rightProducts = new int[n];
// 计算左侧元素的乘积
leftProducts[0] = 1;
for (int i = 1; i < n; i++) {
leftProducts[i] = leftProducts[i - 1] * nums[i - 1];
}
// 计算右侧元素的乘积
rightProducts[n - 1] = 1;
for (int i = n - 2; i >= 0; i--) {
rightProducts[i] = rightProducts[i + 1] * nums[i + 1];
}
// 将左右乘积相乘得到结果
for (int i = 0; i < n; i++) {
result[i] = leftProducts[i] * rightProducts[i];
}
return result;
}
}
进阶:在 O(1) 的额外空间复杂度内完成这个题目,通过对左右乘积的计算进行优化,不需要使用额外的数组来存储左右乘积,而是直接在计算结果数组时进行更新。只使用一个额外的变量 rightProduct
来存储右侧元素的乘积,并在遍历过程中直接更新结果数组 result
。这样就避免了使用额外的数组空间,使得空间复杂度为 O(1)。
class Solution {
public int[] productExceptSelf(int[] nums) {
int n = nums.length;
int[] result = new int[n];
// 计算左侧元素的乘积并存储在结果数组中
result[0] = 1;
for (int i = 1; i < n; i++) {
result[i] = result[i - 1] * nums[i - 1];
}
// 用一个变量存储右侧元素的乘积
int rightProduct = 1;
for (int i = n - 1; i >= 0; i--) {
result[i] *= rightProduct; // 直接更新结果数组中的值
rightProduct *= nums[i]; // 更新右侧乘积
}
return result;
}
}