宋浩概率论与数理统计笔记——第五章

5.1 大数定律

大量重复试验的平均结果的稳定性

5.1.1 切比雪夫不等式

定理: E X 和 D X 都 存 在 , ∀ ϵ > 0 , P ( ∣ x − E X ∣ ≥ ϵ ) ≤ D X ϵ 2 EX和DX都存在,\forall \epsilon>0,P(|x-EX|\geq\epsilon)\leq\frac{DX}{\epsilon^2} EXDXϵ>0,P(xEXϵ)ϵ2DX

变式: P ( ∣ x − E X ∣ < ϵ ) ≥ 1 − D X ϵ 2 P(|x-EX|<\epsilon)\geq1-\frac{DX}{\epsilon^2} P(xEX<ϵ)1ϵ2DX

证:

X 连 续 : ( x − E X ) 2 ≥ ϵ 2 左 边 = ∫ ∣ x − E X ∣ ≥ ϵ f ( x ) d x ≤ ∫ ∣ x − E X ∣ ≥ ϵ ( x − E X ) 2 ϵ 2 f ( x ) d x ≤ ∫ − ∞ + ∞ ( x − E X ) 2 ϵ 2 f ( x ) d x = 1 ϵ 2 ∫ − ∞ + ∞ ( x − E X ) 2 f ( x ) d x = D X ϵ 2 X连续:(x-EX)^2\geq\epsilon^2\\左边=\int_{|x-EX|\geq\epsilon}f(x)dx\leq\int_{|x-EX|\geq\epsilon}\frac{(x-EX)^2}{\epsilon^2}f(x)dx\leq\int_{-\infty}^{+\infty}\frac{(x-EX)^2}{\epsilon^2}f(x)dx\\=\frac{1}{\epsilon^2}\int_{-\infty}^{+\infty}(x-EX)^2f(x)dx=\frac{DX}{\epsilon^2} X(xEX)2ϵ2=xEXϵf(x)dxxEXϵϵ2(xEX)2f(x)dx+ϵ2(xEX)2f(x)dx=ϵ21+(xEX)2f(x)dx=ϵ2DX

D X ϵ 2 D X 越 小 , 波 动 越 小 , 落 在 外 面 的 概 率 越 小 ; D X 越 大 , 波 动 越 大 , 落 在 外 面 的 概 率 越 大 ϵ 越 大 , 落 在 外 面 的 概 率 越 小 ; ϵ 越 小 , 落 在 外 面 的 概 率 越 大 \frac{DX}{\epsilon^2}\\DX越小,波动越小,落在外面的概率越小;DX越大,波动越大,落在外面的概率越大\\\epsilon越大,落在外面的概率越小;\epsilon越小,落在外面的概率越大 ϵ2DXDXDXϵϵ

例:人血液中白细胞平均7300,标准差:700,求血液中白细胞含量5200~9400之间的概率

E X = 7300 , D X = 490000 7300 − 5600 = 9400 − 7300 = 2100 , ϵ = 2100 P ( ∣ x − 7300 ∣ ≤ 2100 ) ≥ 1 − 490000 210 0 2 EX=7300,DX=490000\\7300-5600=9400-7300=2100,\epsilon=2100\\P(|x-7300|\leq2100)\geq1-\frac{490000}{2100^2} EX=7300,DX=49000073005600=94007300=2100,ϵ=2100P(x73002100)121002490000

例: E X = μ , D X = σ 2 > 0 , P { x − μ ∣ ≥ 3 σ } EX=\mu,DX=\sigma^2>0,P\{x-\mu|\geq3\sigma\} EX=μ,DX=σ2>0,P{xμ3σ}

P { ∣ x − μ ∣ ≥ 3 σ } ≤ D X ϵ 2 = σ 2 9 σ 2 = 1 9 P\{|x-\mu|\geq3\sigma\}\leq\frac{DX}{\epsilon^2}=\frac{\sigma^2}{9\sigma^2}=\frac{1}{9} P{xμ3σ}ϵ2DX=9σ2σ2=91

例 如 : X ∼ N ( μ , σ 2 ) P { ∣ x − μ ∣ ≥ 3 σ } = 1 − P { ∣ x − μ ∣ < 3 σ } = 1 − P { − 3 σ < x − μ < 3 σ } = 1 − P { − 3 < x − μ σ < 3 } = 1 − ( Φ 0 ( 3 ) − Φ 0 ( − 3 ) ) = 1 − ( Φ 0 ( 3 ) − 1 + Φ 0 ( 3 ) ) = 2 − 2 Φ 0 ( 3 ) ≈ 0.0027 例如:X\sim N(\mu,\sigma^2)\\P\{|x-\mu|\geq3\sigma\}\\=1-P\{|x-\mu|<3\sigma\}\\=1-P\{-3\sigma<x-\mu<3\sigma\}\\=1-P\{-3<\frac{x-\mu}{\sigma}<3\}\\=1-(\Phi_0(3)-\Phi_0(-3))\\=1-(\Phi_0(3)-1+\Phi_0(3))\\=2-2\Phi_0(3)\\\approx0.0027 XN(μ,σ2)P{xμ3σ}=1P{xμ<3σ}=1P{3σ<xμ<3σ}=1P{3<σxμ<3}=1(Φ0(3)Φ0(3))=1(Φ0(3)1+Φ0(3))=22Φ0(3)0.0027

5.1.2 切比雪夫大数定律

收敛: a n → a , ∀ ϵ > 0 , ∃ N > 0 , n > N 时 ∣ a n − a ∣ < ϵ 存 在 某 一 项 , 这 项 后 面 的 全 部 项 , 落 在 区 域 内 a_n\rightarrow a,\forall \epsilon>0,\exist N>0,n>N时|a_n-a|<\epsilon\\存在某一项,这项后面的全部项,落在区域内 ana,ϵ>0,N>0,n>Nana<ϵ

依概率收敛:$\forall \epsilon>0,\exist N>0,n>N时,P{|x_n-a|<\epsilon}=1,\lim_{n\rightarrow\infty} P{|x_n-a|<\epsilon}=1 $

定理(伯努利大数定律)

n 重 伯 努 利 实 验 , A 发 生 了 m n 次 , 概 率 为 P , 频 率 为 m n n , lim ⁡ n → ∞ P { ∣ m n n − a ∣ < ϵ } = 1 lim ⁡ n → ∞ P { ∣ m n n − a ∣ ≥ ϵ } = 0 n重伯努利实验,A发生了m_n次,概率为P,频率为\frac{m_n}{n},\lim_{n\rightarrow\infty} P\{|\frac{m_n}{n}-a|<\epsilon\}=1\\\lim_{n\rightarrow\infty} P\{|\frac{m_n}{n}-a|\geq\epsilon\}=0 nAmn,Pnmn,limnP{nmna<ϵ}=1limnP{nmnaϵ}=0

证: m n ∼ B ( n , p ) E m n = n p , D m n = n p ( 1 − p ) E ( m n n ) = n p n = p , D ( m n n ) = 1 n 2 D ( m n ) = p ( 1 − p ) n ∀ ϵ > 0 , 1 ≥ P { ∣ m n n − p ∣ < ϵ } ≥ 1 − D ( m n n ) ϵ 2 = 1 − p ( 1 − p ) n ϵ 2 → 1 ( n → ∞ ) 夹 逼 定 理 得 P { ∣ m n n − p ∣ < ϵ } = 1 m_n\sim B(n,p)Em_n=np,Dm_n=np(1-p)\\E(\frac{m_n}{n})=\frac{np}{n}=p,D(\frac{m_n}{n})=\frac{1}{n^2}D(m_n)=\frac{p(1-p)}{n}\\\forall\epsilon>0,1\geq P\{|\frac{m_n}{n}-p|<\epsilon\}\geq1-\frac{D(\frac{m_n}{n})}{\epsilon^2}=1-\frac{p(1-p)}{n\epsilon^2}\rightarrow 1(n\rightarrow\infty)\\夹逼定理得\\P\{|\frac{m_n}{n}-p|<\epsilon\}=1 mnB(n,p)Emn=np,Dmn=np(1p)E(nmn)=nnp=p,D(nmn)=n21D(mn)=np(1p)ϵ>0,1P{nmnp<ϵ}1ϵ2D(nmn)=1nϵ2p(1p)1(n)P{nmnp<ϵ}=1

X 1 , . . . , X n 相 互 独 立 且 服 从 同 一 个 分 布 ( 独 立 同 分 布 ) X_1,...,X_n相互独立且服从同一个分布(独立同分布) X1,...,Xn

X i = { 1 发 生 0 不 发 生 E X i = p , D X i = p ( 1 − p ) , m n = Σ i = 1 n X i , m n n = 1 n Σ i = 1 n X i p = E ( 1 n Σ X i ) = 1 n Σ E X i , lim ⁡ n → ∞ P { ∣ m n n − p ∣ < ϵ } = lim ⁡ n → ∞ P { ∣ 1 n Σ i = 1 n X i − 1 n Σ E X i ∣ < ϵ } = 1 X_i = \left\{ \begin{array}{rcl} 1 & 发生 \\ 0 & 不发生 \end{array}\right.EX_i=p,DX_i=p(1-p),\\m_n=\Sigma_{i=1}^{n}X_i,\frac{m_n}{n}=\frac{1}{n}\Sigma_{i=1}^{n}X_i\\p=E(\frac{1}{n}\Sigma X_i)=\frac{1}{n}\Sigma EX_i,\\\lim_{n\rightarrow \infty}P\{|\frac{m_n}{n}-p|<\epsilon\}\\=\lim_{n\rightarrow \infty}P\{|\frac{1}{n}\Sigma_{i=1}^{n}X_i-\frac{1}{n}\Sigma EX_i|<\epsilon\}=1 Xi={10EXi=p,DXi=p(1p),mn=Σi=1nXi,nmn=n1Σi=1nXip=E(n1ΣXi)=n1ΣEXi,limnP{nmnp<ϵ}=limnP{n1Σi=1nXin1ΣEXi<ϵ}=1

定理:切比雪夫大数定律 X 1 , . . , X n , . . . 是 不 相 关 的 变 量 , E X i 和 D X i 都 存 在 , 方 差 有 界 , D X i ≤ M , ∀ ϵ > 0 lim ⁡ n → ∞ P { ∣ 1 n Σ i = 1 n X i − 1 n Σ E X i ∣ < ϵ } = 1 这 些 变 量 的 均 值 收 敛 于 期 望 的 均 值 X_1,..,X_n,...是不相关的变量,EX_i和DX_i都存在,方差有界,DX_i\leq M,\forall \epsilon>0\\\lim_{n\rightarrow \infty}P\{|\frac{1}{n}\Sigma_{i=1}^{n}X_i-\frac{1}{n}\Sigma EX_i|<\epsilon\}=1\\这些变量的均值收敛于期望的均值 X1,..,Xn,...,EXiDXiDXiM,ϵ>0limnP{n1Σi=1nXin1ΣEXi<ϵ}=1

证:

E ( 1 n Σ i = 1 n X i ) = 1 n Σ i = 1 n E X i ∵ X 1 , . . . , X n 不 相 关 ∴ C o v ( X i , X j ) = 0 又 ∵ D ( X + Y ) = D X + D Y + C o v ( X , Y ) ∴ D ( 1 n Σ i = 1 n X i ) = 1 n 2 Σ i = 1 n D X i ≤ n M n 2 = M n 1 ≥ P { ∣ 1 n Σ i = 1 n X i − 1 n Σ i = 1 n E X i ∣ < ϵ } ≥ 1 − D ( 1 n Σ i = 1 n X i ) ϵ 2 = 1 − M n ϵ 2 → 1 夹 逼 定 理 得 P { ∣ 1 n Σ i = 1 n X i − 1 n Σ i = 1 n E X i ∣ < ϵ } = 1 E(\frac1n\Sigma_{i=1}^{n}X_i)=\frac1n\Sigma_{i=1}^{n}EX_i\\\because X_1,...,X_n不相关\therefore Cov(X_i,X_j)=0\\又\because D(X+Y)=DX+DY+Cov(X,Y)\\\therefore D(\frac1n\Sigma_{i=1}^{n}X_i)=\frac1{n^2}\Sigma_{i=1}^{n}DX_i\leq\frac{nM}{n^2}=\frac{M}{n}\\1\geq P\{|\frac1n\Sigma_{i=1}^{n}X_i-\frac1n\Sigma_{i=1}^{n}EX_i|<\epsilon\}\geq1-\frac{D(\frac1n\Sigma_{i=1}^{n}X_i)}{\epsilon^2}=1-\frac{M}{n\epsilon^2}\rightarrow 1\\夹逼定理得\\P\{|\frac1n\Sigma_{i=1}^{n}X_i-\frac1n\Sigma_{i=1}^{n}EX_i|<\epsilon\}=1 E(n1Σi=1nXi)=n1Σi=1nEXiX1,...,XnCov(Xi,Xj)=0D(X+Y)=DX+DY+Cov(X,Y)D(n1Σi=1nXi)=n21Σi=1nDXin2nM=nM1P{n1Σi=1nXin1Σi=1nEXi<ϵ}1ϵ2D(n1Σi=1nXi)=1nϵ2M1P{n1Σi=1nXin1Σi=1nEXi<ϵ}=1

推论: X 1 , . . . , X n 服 从 独 立 同 分 布 , E X i = μ , D X i = σ 2 , ϵ > 0 lim ⁡ n → ∞ P { ∣ 1 n Σ i = 1 n X i − μ ∣ < ϵ } = 1 X_1,...,X_n服从独立同分布,EX_i=\mu,DX_i=\sigma^2,\epsilon>0\\\lim_{n\rightarrow\infty}P\{|\frac{1}{n}\Sigma_{i=1}^{n}X_i-\mu|<\epsilon\}=1 X1,...,Xn,EXi=μ,DXi=σ2,ϵ>0limnP{n1Σi=1nXiμ<ϵ}=1

定理:辛钦大数定律

X 1 , . . . , X n 服 从 独 立 同 分 布 , E X i = μ , 方 差 无 要 求 lim ⁡ n → ∞ P { ∣ 1 n Σ i = 1 n X i − μ ∣ < ϵ } = 1 X_1,...,X_n服从独立同分布,EX_i=\mu,方差无要求\\\lim_{n\rightarrow\infty}P\{|\frac{1}{n}\Sigma_{i=1}^{n}X_i-\mu|<\epsilon\}=1 X1,...,Xn,EXi=μ,limnP{n1Σi=1nXiμ<ϵ}=1

举 个 🌰 子 : 测 量 长 度 { 真 实 的 长 度 期 望 多 次 测 量 取 平 均 值 向 期 望 逼 近 ↑ 举个🌰子:测量长度 \left\{ \begin{array}{rcl} 真实的长度&期望 \\ 多次测量取平均值向期望逼近↑ \end{array}\right. 🌰{

5.2 中心极限定理

现象由大量相互独立的因素影响

大量独立同分布的随机变量之和的极限分布是正态分布

定理: x 1 , . . . , x n x_1,...,x_n x1,...,xn独立同分布, E X i = μ , D X i = σ 2 , 0 < σ 2 < + ∞ EX_i=\mu,DX_i=\sigma^2,0<\sigma^2<+\infty EXi=μ,DXi=σ2,0<σ2<+

lim ⁡ n → ∞ P ( ∑ i = 1 n x i − n μ n σ ≤ x ) = Φ 0 ( x ) \lim_{n\rightarrow\infty}P(\frac{\sum_{i=1}^{n}x_i-n\mu}{\sqrt{n}\sigma}\leq x)=\Phi_0(x) limnP(n σi=1nxinμx)=Φ0(x)

Y = ∑ i = 1 n x i , E Y = E ∑ i = 1 n x i = n μ D Y = D ( ∑ i = 1 n x i ) = ∑ i = 1 n D X i = n σ 2 Y=\sum_{i=1}^{n}x_i,EY=E\sum_{i=1}^{n}x_i=n\mu\\DY=D(\sum_{i=1}^{n}x_i)=\sum_{i=1}^{n}DX_i=n\sigma^2 Y=i=1nxi,EY=Ei=1nxi=nμDY=D(i=1nxi)=i=1nDXi=nσ2

∑ x i − n μ n σ     N ( 0 , 1 ) ∑ i = 1 n x i    N ( n μ , n σ 2 ) \frac{\sum{x_i}-n\mu}{\sqrt{n}\sigma}\ \ \ N(0,1)\\\sum_{i=1}^{n}x_i\ \ N(n\mu,n\sigma^2) n σxinμ   N(0,1)i=1nxi  N(nμ,nσ2)

例:

商店每天接待100名顾客,[0,60]均匀分布,独立,日销售额超过3500元的概率

x i 是 第 i 人 , E X i = 30 , D X i = 6 0 2 / 12 = 300 , ∑ i = 1 100 X i > 3500 , ∑ X i − 3000 100 3 ∼ N ( 0 , 1 ) P ( ∑ i = 1 100 x i > 3500 ) = 1 − P ( ∑ X i ≤ 3500 ) = 11 − P ( ∑ X i − 3000 100 3 ≤ 3500 − 3000 100 3 ) = 1 − Φ 0 ( 2.887 ) = 0.002 x_i是第i人,EX_i=30,DX_i=60^2/12=300,\sum_{i=1}^{100}X_i>3500,\frac{\sum X_i-3000}{100\sqrt3}\sim N(0,1)\\P(\sum_{i=1}^{100}x_i>3500)=1-P(\sum X_i\leq 3500)=11-P(\frac{\sum X_i-3000}{100\sqrt3}\leq\frac{3500-3000}{100\sqrt3})\\=1-\Phi_0(2.887)=0.002 xii,EXi=30,DXi=602/12=300,i=1100Xi>3500,1003 Xi3000N(0,1)P(i=1100xi>3500)=1P(Xi3500)=11P(1003 Xi30001003 35003000)=1Φ0(2.887)=0.002

例:

X1098
P0.50.30.2

E X = 10 ∗ 0.5 + 9 ∗ 0.3 + 8 ∗ 0.2 = 9.3 EX=10*0.5+9*0.3+8*0.2=9.3 EX=100.5+90.3+80.2=9.3

E X 2 = 100 ∗ 0.5 + 81 ∗ 0.3 + 64 ∗ 0.2 = EX^2=100*0.5+81*0.3+64*0.2= EX2=1000.5+810.3+640.2=

D X = E X 2 − ( E X ) 2 = 0.61 DX=EX^2-(EX)^2=0.61 DX=EX2(EX)2=0.61

射击100次环数在915~945之间的概率

∑ X i − 930 61 ∼ N ( 0 , 1 ) \frac{\sum X_i-930}{\sqrt{61}}\sim N(0,1) 61 Xi930N(0,1)

P ( 915 ≤ ∑ X i ≤ 945 ) = P ( 915 − 930 61 ≤ ∑ X i − 930 61 ≤ 945 − 930 61 ) = P ( − 1.92 ≤ ∑ X i − 930 61 ≤ 1.92 ) = Φ 0 ( 1.92 ) − Φ 0 ( − 1.92 ) = Φ 0 ( 1.92 ) − ( 1 − Φ 0 ( 1.92 ) ) P(915\leq\sum X_i\leq945)=P({\frac{915-930}{\sqrt{61}}}\leq\frac{\sum X_i-930}{\sqrt{61}}\leq\frac{945-930}{\sqrt{61}})\\=P(-1.92\leq\frac{\sum X_i-930}{\sqrt{61}}\leq1.92)\\=\Phi_0(1.92)-\Phi_0(-1.92)\\=\Phi_0(1.92)-(1-\Phi_0(1.92)) P(915Xi945)=P(61 91593061 Xi93061 945930)=P(1.9261 Xi9301.92)=Φ0(1.92)Φ0(1.92)=Φ0(1.92)(1Φ0(1.92))

定理: Y n 为 参 数 为 n , p 的 二 项 分 布 , 有 n 趋 于 lim ⁡ n → ∞ P ( Y n − n p n p ( 1 − p ) ≤ x ) = Φ 0 ( x ) Y n = ∑ i = 1 n X i , X i = { 1 发 生 0 未 发 生 , E X i = p , D X i = p ( 1 − p ) Y_n为参数为n,p的二项分布,\\有n趋于\lim_{n\rightarrow\infty}P(\frac{Y_n-np}{\sqrt{np(1-p)}}\leq x)=\Phi_0(x)\\Y_n=\sum_{i=1}^{n}X_i,X_i= \left\{ \begin{array}{rcl} 1 & 发生 \\ 0 & 未发生 \end{array}\right.,EX_i=p,DX_i=p(1-p) Ynn,p,nlimnP(np(1p) Ynnpx)=Φ0(x)Yn=i=1nXi,Xi={10,EXi=p,DXi=p(1p)

二 项 分 布 ⟶ 近 似 正 态 分 布 二项分布\longrightarrow^{近似}正态分布

例:每人死亡的概率0.005,有10000人保险,死亡人数不超过70人的概率

X为死亡人数

P ( X ≤ 70 ) = ∑ k = 0 70 C 10000 k 0.00 5 k 0.99 5 10000 − k P ( X ≤ 70 ) = P ( x − n p n p ( 1 − p ) ≤ 70 − n p n p ( 1 − p ) ) = Φ 0 ( 2.84 ) = 0.9977 P(X\leq70)=\sum_{k=0}^{70}C_{10000}^{k}0.005^k0.995^{10000-k}\\P(X\leq70)=P(\frac{x-np}{\sqrt{np(1-p)}}\leq \frac{70-np}{np(1-p)})=\Phi_0(2.84)=0.9977 P(X70)=k=070C10000k0.005k0.99510000kP(X70)=P(np(1p) xnpnp(1p)70np)=Φ0(2.84)=0.9977

P ( X = k ) = P ( k − 1 2 < x < k + 1 2 ) = P ( k − 1 2 − n p n p ( 1 − n p ) < x − n p n p ( 1 − n p ) < k + 1 2 − n p n p ( 1 − n p ) ) = Φ 0 ( k + 1 2 − n p n p ( 1 − n p ) ) − Φ 0 ( k − 1 2 − n p n p ( 1 − n p ) ) P(X=k)=P(k-\frac{1}{2}<x<k+\frac{1}{2})=P(\frac{k-\frac{1}{2}-np}{\sqrt{np(1-np)}}<\frac{x-np}{\sqrt{np(1-np)}}<\frac{k+\frac{1}{2}-np}{\sqrt{np(1-np)}})\\=\Phi_0(\frac{k+\frac{1}{2}-np}{\sqrt{np(1-np)}})-\Phi_0(\frac{k-\frac{1}{2}-np}{\sqrt{np(1-np)}}) P(X=k)=P(k21<x<k+21)=P(np(1np) k21np<np(1np) xnp<np(1np) k+21np)=Φ0(np(1np) k+21np)Φ0(np(1np) k21np)

例:每个子弹击中飞机的概率为0.01,有500发子弹,3发击中飞机的概率

P ( X = 5 ) = P ( 4.5 < X < 5.5 ) = P ( 4.5 − 5 500 × 0.01 × 0.99 < X < 5.5 − 5 500 × 0.01 × 0.99 ) = 0.178 P(X=5)=P(4.5<X<5.5)=P(\frac{4.5-5}{\sqrt{500\times 0.01\times 0.99}}<X<\frac{5.5-5}{\sqrt{500\times 0.01\times 0.99}})=0.178 P(X=5)=P(4.5<X<5.5)=P(500×0.01×0.99 4.55<X<500×0.01×0.99 5.55)=0.178

二 项 分 布 — — 近 似 { 泊 松 分 布 n 大 , n p 适 中 正 态 分 布 n 大 , n p 大 二项分布——近似\left\{ \begin{array}{rcl} 泊松分布 & n大,np适中 \\ 正态分布 & n大,np大 \end{array}\right. {n,npn,np

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值