宋浩概率论与数理统计-第五章-笔记

第五章

5.1 大数定律

5.1.1 切比雪夫不等式

定理:若 E ( X ) E(X) E(X) D ( X ) D(X) D(X)存在, ∀ ϵ > 0 \forall \epsilon>0 ϵ>0 P ( ∣ X − E ( X ) ∣ ≥ ϵ ) ≤ D ( X ) ϵ 2 P(|X-E(X)|\geq\epsilon)\leq\displaystyle\frac{D(X)}{\epsilon^2} P(XE(X)ϵ)ϵ2D(X)
(变形:) P ( ∣ X − E ( X ) ∣ ≥ ϵ ) ≥ 1 − D ( X ) ϵ 2 P(|X-E(X)|\geq\epsilon)\geq1-\displaystyle\frac{D(X)}{\epsilon^2} P(XE(X)ϵ)1ϵ2D(X)


【例1】白细胞平均:7300,标准差:700,求白细胞数在5200~9400的概率

解:
E ( X ) = 7300 , D ( X ) = 490000 E(X)=7300,D(X)=490000 E(X)=7300,D(X)=490000
9400 − 7300 = 7300 − 5200 = 2100 9400-7300=7300-5200=2100 94007300=73005200=2100
ϵ = 2100 \epsilon=2100 ϵ=2100
P ( ∣ X − 7300 ∣ ≤ 2100 ) ≥ 1 − 490000 210 0 2 P(|X-7300|\leq2100)\geq1-\displaystyle\frac{490000}{2100^2} P(X73002100)121002490000

【例2】 E ( X ) = μ , D ( X ) = σ 2 > 0 E(X)=\mu,D(X)=\sigma^2>0 E(X)=μ,D(X)=σ2>0,求 P ( ∣ X − μ ∣ ≥ 3 σ ) P(|X-\mu|\geq3\sigma) P(Xμ3σ)

解:
P ( ∣ X − μ ∣ ≥ 3 σ ) ≤ D ( X ) ( 3 σ ) 2 = σ 2 9 σ 2 = 1 9 P(|X-\mu|\geq3\sigma)\leq\displaystyle\frac{D(X)}{(3\sigma)^2}=\displaystyle\frac{\sigma^2}{9\sigma^2}=\displaystyle\frac{1}{9} P(Xμ3σ)(3σ)2D(X)=9σ2σ2=91

5.1.2 切比雪夫大数定律

收敛:
a n → a a_n\to a ana ∀ ϵ > 0 , ∃ N > 0 , n > N \forall\epsilon>0,\exist N>0,n>N ϵ>0,N>0,n>N时, ∣ a n − a ∣ < ϵ |a_n-a|<\epsilon ana<ϵ

依概率收敛:
x n → P a \displaystyle x_n\overset{P}{\to}a xnPa ∀ ϵ > 0 , ∃ N > 0 , n > N \forall\epsilon>0,\exist N>0,n>N ϵ>0,N>0,n>N时, lim ⁡ n → ∞ P ( ∣ x n − a ∣ < ϵ ) = 1 \lim\limits_{n\to\infin}P(|x_n-a|<\epsilon)=1 nlimP(xna<ϵ)=1

伯努利大数定律:
n重伯努利实验,A发生了 m n m_n mn次, lim ⁡ n → ∞ P ( ∣ m n n − p ∣ < ϵ ) = 1 \lim\limits_{n\to\infin}P(|\displaystyle\frac{m_n}{n}-p|<\epsilon)=1 nlimP(nmnp<ϵ)=1
(变形:) lim ⁡ n → ∞ P ( ∣ m n n − p ∣ ≥ ϵ ) = 0 \lim\limits_{n\to\infin}P(|\displaystyle\frac{m_n}{n}-p|\geq\epsilon)=0 nlimP(nmnpϵ)=0

即:频率收敛于概率

x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn独立同分布, x i = { 1 发 生 0 不 发 生 x_i=\begin{cases}1 & 发生\\0 & 不发生 \end{cases} xi={10
E ( X i ) = p , D ( X i ) = p ( 1 − p ) , m n = ∑ i = 1 n x i E(X_i)=p,D(X_i)=p(1-p),m_n=\sum\limits_{i=1}^{n}x_i E(Xi)=p,D(Xi)=p(1p),mn=i=1nxi

m n n = 1 n ∑ i = 1 n x i , p = E ( 1 n ∑ x i ) = 1 n ∑ i = 1 n E ( X i ) \displaystyle\frac{m_n}{n}=\frac{1}{n}\sum\limits_{i=1}^{n}x_i,p=E(\displaystyle\frac{1}{n}\sum x_i)=\frac{1}{n}\sum\limits_{i=1}^{n}E(X_i) nmn=n1i=1nxi,p=E(n1xi)=n1i=1nE(Xi)

lim ⁡ n → ∞ P ( ∣ 1 n ∑ i = 1 n x i − 1 n ∑ i = 1 n E ( X i ) ∣ < ϵ ) = 1 \displaystyle\lim\limits_{n\to\infin}P(|\frac{1}{n}\sum\limits_{i=1}^{n}x_i-\frac{1}{n}\sum\limits_{i=1}^{n}E(X_i)|<\epsilon)=1 nlimP(n1i=1nxin1i=1nE(Xi)<ϵ)=1

切比雪夫大数定律: x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn是两两不相关的变量, E ( X i ) E(X_i) E(Xi) D ( X i ) D(X_i) D(Xi)都存在,方差有界, D ( X i ) ≤ M D(X_i)\leq M D(Xi)M ∀ ϵ > 0 , lim ⁡ n → ∞ P ( ∣ 1 n ∑ i = 1 n x i − 1 n ∑ i = 1 n E ( X i ) ∣ < ϵ ) = 1 \forall\epsilon>0,\displaystyle\lim\limits_{n\to\infin}P(|\frac{1}{n}\sum\limits_{i=1}^{n}x_i-\frac{1}{n}\sum\limits_{i=1}^{n}E(X_i)|<\epsilon)=1 ϵ>0,nlimP(n1i=1nxin1i=1nE(Xi)<ϵ)=1

即:变量的均值收敛于期望的均值

推论: x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn独立同分布, E ( X i ) = μ , D ( X i ) = σ 2 , ∀ ϵ > 0 , lim ⁡ n → ∞ P ( ∣ 1 n ∑ i = 1 n x i − μ ∣ < ϵ ) = 1 E(X_i)=\mu,D(X_i)=\sigma^2,\forall\epsilon>0,\displaystyle\lim\limits_{n\to\infin}P(|\frac{1}{n}\sum\limits_{i=1}^{n}x_i-\mu|<\epsilon)=1 E(Xi)=μ,D(Xi)=σ2,ϵ>0,nlimP(n1i=1nxiμ<ϵ)=1

辛钦大数定律: x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn独立同分布, E ( X i ) = μ E(X_i)=\mu E(Xi)=μ,方差无要求, ∀ ϵ > 0 , lim ⁡ n → ∞ P ( ∣ 1 n ∑ i = 1 n x i − μ ∣ < ϵ ) = 1 \forall\epsilon>0,\displaystyle\lim\limits_{n\to\infin}P(|\frac{1}{n}\sum\limits_{i=1}^{n}x_i-\mu|<\epsilon)=1 ϵ>0,nlimP(n1i=1nxiμ<ϵ)=1

即:平均数收敛于期望

5.2 中心极限定理

现象由大量相互独立的因素影响
大量独立同分布的变量和的极限分布是正态分布

定理: X 1 , X 2 , ⋯   , x n X_1,X_2,\cdots,x_n X1,X2,,xn独立同分布, E ( X i ) = μ , D ( X i ) = σ 2 , 0 < σ 2 < + ∞ E(X_i)=\mu,D(X_i)=\sigma^2,0<\sigma^2<+\infin E(Xi)=μ,D(Xi)=σ2,0<σ2<+,则 lim ⁡ n → ∞ P ( ∑ i = 1 n x i − n μ n σ ≤ x ) = Φ 0 ( x ) \displaystyle\lim\limits_{n\to\infin}P(\frac{\sum\limits_{i=1}^{n}x_i-n\mu}{\sqrt{n}\sigma}\leq x)=\Phi_{0}(x) nlimP(n σi=1nxinμx)=Φ0(x)

Y = ∑ i = 1 n x i Y=\sum\limits_{i=1}^{n}x_i Y=i=1nxi,则 E ( Y ) = n μ , D ( Y ) = n σ 2 E(Y)=n\mu,D(Y)=n\sigma^2 E(Y)=nμ,D(Y)=nσ2

∑ i = 1 n x i − n μ n σ \displaystyle\frac{\sum\limits_{i=1}^{n}x_i-n\mu}{\sqrt{n}\sigma} n σi=1nxinμ可按照 N ( 0 , 1 ) N(0,1) N(0,1)近似, ∑ i = 1 n x i \sum\limits_{i=1}^{n}x_i i=1nxi按照 N ( n μ , n σ 2 ) N(n\mu,n\sigma^2) N(nμ,nσ2)计算


【例1】顾客100人,在 [ 0 , 60 ] [0,60] [0,60]均匀分布,独立,日销售额超过3500元的概率

解:
X i X_i Xi为第 i i i人的消费, E ( X i ) = 30 , D ( X i ) = 6 0 2 ÷ 12 = 300 E(X_i)=30,D(X_i)=60^2\div12=300 E(Xi)=30,D(Xi)=602÷12=300
根据中心极限定理, ∑ x i − 3000 100 3 ∼ 近 似 N ( 0 , 1 ) \displaystyle\frac{\sum x_i-3000}{100\sqrt{3}}\overset{近似}{\sim}N(0,1) 1003 xi3000N(0,1)

P ( ∑ i = 1 100 x i > 3500 ) = 1 − P ( ∑ x i ≤ 3500 ) = 1 − P ( ∑ x i − 3000 100 3 ≤ 3500 − 3000 100 3 ) = 1 − Φ 0 ( 2.887 ) P(\sum\limits_{i=1}^{100}x_i>3500)=1-P(\sum x_i\leq3500)=1-P(\frac{\sum x_i-3000}{100\sqrt{3}}\leq\frac{3500-3000}{100\sqrt{3}})=1-\Phi_0(2.887) P(i=1100xi>3500)=1P(xi3500)=1P(1003 xi30001003 35003000)=1Φ0(2.887)

【例2】某人射击环数的分布律为:
X 10 9 8 P 0.5 0.3 0.2 \begin{array}{c|c} X & 10 & 9 & 8\\ \hline P & 0.5 & 0.3 & 0.2 \end{array} XP100.590.380.2
求100次射击总环数为915~945的概率

解:
X i X_i Xi为第 i i i次射击环数
E ( X ) = 9.3 , D ( X ) = 0.61 E(X)=9.3,D(X)=0.61 E(X)=9.3,D(X)=0.61
∑ x i − 930 61 ∼ 近 似 N ( 0 , 1 ) \displaystyle\frac{\sum x_i-930}{\sqrt{61}}\overset{近似}{\sim}N(0,1) 61 xi930N(0,1)

P ( 915 ≤ ∑ x i ≤ 945 ) = P ( 915 − 930 61 ≤ ∑ x i − 930 61 ≤ 945 − 930 61 ) = P ( − 1.92 ≤ ∑ x i − 930 61 ≤ 1.92 ) = 2 Φ 0 ( 1.92 ) − 1 P(915\leq\sum x_i\leq945)=P(\displaystyle\frac{915-930}{\sqrt{61}}\leq\frac{\sum x_i-930}{\sqrt{61}}\leq\frac{945-930}{\sqrt{61}})=P(-1.92\leq\displaystyle\frac{\sum x_i-930}{\sqrt{61}}\leq1.92)=2\Phi_0(1.92)-1 P(915xi945)=P(61 91593061 xi93061 945930)=P(1.9261 xi9301.92)=2Φ0(1.92)1

棣莫弗-拉普拉斯定理: Y n Y_n Yn是参数为n,p的二项分布,则 lim ⁡ n → ∞ P ( Y n − n p n p ( 1 − p ) ≤ x ) = Φ 0 ( x ) \displaystyle\lim\limits_{n\to\infin}P(\frac{Y_n-np}{\sqrt{np(1-p)}}\leq x)=\Phi_0(x) nlimP(np(1p) Ynnpx)=Φ0(x)


【例3】保险中每人死亡概率0.005,有10000人参加,求死亡人数超过70人的概率

解:设 X X X表示死亡人数

  • 二项分布法:
    P ( X ≤ 70 ) ∑ k = 0 70 C 10000 k 0.00 5 k 0.99 5 10000 − k P(X\leq70)\displaystyle\sum\limits_{k=0}^{70}C_{10000}^{k}0.005^{k}0.995^{10000-k} P(X70)k=070C10000k0.005k0.99510000k
  • 正态分布法:
    P ( X ≤ 70 ) = P ( X − n p n p ( 1 − p ) ≤ 70 − n p n p ( 1 − p ) ) = Φ 0 ( 2.84 ) P(X\leq70)=P(\frac{X-np}{\sqrt{np(1-p)}}\leq\frac{70-np}{\sqrt{np(1-p)}})=\Phi_0(2.84) P(X70)=P(np(1p) Xnpnp(1p) 70np)=Φ0(2.84)

(变形:) P ( X = k ) = P ( k − 1 2 < X < k + 1 2 ) = P ( k − 1 2 − n p n p ( 1 − p ) < X − n p n p ( 1 − p ) < k + 1 2 − n p n p ( 1 − p ) ) = Φ 0 ( k + 1 2 − n p n p ( 1 − p ) ) − Φ 0 ( k − 1 2 − n p n p ( 1 − p ) ) P(X=k)=P(k-\frac{1}{2}<X<k+\frac{1}{2})=P(\frac{k-\frac{1}{2}-np}{\sqrt{np(1-p)}}<\frac{X-np}{\sqrt{np(1-p)}}<\frac{k+\frac{1}{2}-np}{\sqrt{np(1-p)}})=\Phi_{0}(\frac{k+\frac{1}{2}-np}{\sqrt{np(1-p)}})-\Phi_0(\frac{k-\frac{1}{2}-np}{\sqrt{np(1-p)}}) P(X=k)=P(k21<X<k+21)=P(np(1p) k21np<np(1p) Xnp<np(1p) k+21np)=Φ0(np(1p) k+21np)Φ0(np(1p) k21np)


【例4】击中飞机的概率0.01,500发子弹,求恰好3发能击中的概率

解:
n = 500 , p = 0.01 n=500,p=0.01 n=500,p=0.01
P ( X = 5 ) = P ( 4.5 < X < 5.5 ) = P ( 4.5 − 5 500 × 0.01 × 0.99 < X < 5.5 − 5 500 × 0.01 × 0.99 ) = 0.178 P(X=5)=P(4.5<X<5.5)=P(\frac{4.5-5}{\sqrt{500\times0.01\times0.99}}<X<\frac{5.5-5}{\sqrt{500\times0.01\times0.99}})=0.178 P(X=5)=P(4.5<X<5.5)=P(500×0.01×0.99 4.55<X<500×0.01×0.99 5.55)=0.178

二项分布近似:
n n n大, n p np np适中——泊松分布
n n n大, n p np np大——正态分布

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值