题目
输入格式:
输入在一行给出正整数N。
输出格式:
在一行中输出不超过N的满足猜想的素数对的个数。
输入样例:
20
输出样例:
4
思路:
判断给定数范围内的所有数是否为素数,将邻近的两个素数存入结构体中,后续判断这两个素数是否满足条件。
踩坑:
用输入数据的迭代次数会超时,用输入数据的平方根次迭代则不会。找了一下资料好像分为埃氏筛法和欧式筛法。。具体就不细究了。
#include <iostream>
#include <cmath>
using namespace std;
typedef struct {
int prev_prime;
int cur_prime;
}adj_prime;
bool isPrime(int num);
int main(){
int count = 0;
int num;
cin >> num;
adj_prime adj_primes[num];
int k = 0;
for(int i = 2; i <= num; ++i){
if(isPrime(i)){
adj_primes[k].cur_prime = i;
if(k > 0){
adj_primes[k].prev_prime = adj_primes[k-1].cur_prime;
}
++k;
}
}
for(int i = 1; i <= k; ++i){
if(adj_primes[i].cur_prime - adj_primes[i].prev_prime == 2){
++count;
}
}
cout << count;
}
bool isPrime(int num){
//注意迭代次数
for(int i = 2; i <= sqrt(num); ++i){
if(num%i == 0){
return false;
}
}
return true;
}
学到和回忆了:
- 判断素数的方法
将待判断的数字依次和该范围内的所有整数相除,一个大于1的正整数,如果除了1和它本身以外,不能被其他正整数整除,就叫素数。
- 为什么求素数用sqrt函数
因为如果它不是质数,那么它一定可以表示成两个数(除了1和它本身)相乘,这两个数必然有一个小于等于它的平方根。只要找到小于或等于的那个就行了