根据逆波兰表示法,求表达式的值。
有效的运算符包括 +, -, *, / 。每个运算对象可以是整数,也可以是另一个逆波兰表达式。
说明:
整数除法只保留整数部分。
给定逆波兰表达式总是有效的。换句话说,表达式总会得出有效数值且不存在除数为 0 的情况。
示例 1:
输入: [“2”, “1”, “+”, “3”, “*”]
输出: 9
解释: ((2 + 1) * 3) = 9
示例 2:
输入: [“4”, “13”, “5”, “/”, “+”]
输出: 6
解释: (4 + (13 / 5)) = 6
示例 3:
输入: [“10”, “6”, “9”, “3”, “+”, “-11”, “", “/”, "”, “17”, “+”, “5”, “+”]
输出: 22
解释:
((10 * (6 / ((9 + 3) * -11))) + 17) + 5
= ((10 * (6 / (12 * -11))) + 17) + 5
= ((10 * (6 / -132)) + 17) + 5
= ((10 * 0) + 17) + 5
= (0 + 17) + 5
= 17 + 5
= 22
利用Stack特性,先进后出,将数字字符入栈,遇到运算字符时候讲栈顶元素还有下一个元素pop,执行运算符相应操作后将结果入栈,将vector循环一遍后返回栈顶即为最终结果,
stoi函数可将字符串转换为int型数据
class Solution {
public:
int evalRPN(vector& tokens) {
if(tokens.size()0)
{
return 0;
}
stack res;
for(int i=0;i<tokens.size();i++)
{
if(tokens[i]""||tokens[i]"/"||tokens[i]"+"||tokens[i]"-")
{
if(tokens[i]"")
{
int temp=res.top();
res.pop();
temp=temp*res.top();
res.pop();
res.push(temp);
}
if(tokens[i]"/")
{
int temp=res.top();
res.pop();
temp=res.top()/temp;
res.pop();
res.push(temp);
}
if(tokens[i]"+")
{
int temp=res.top();
res.pop();
temp=res.top()+temp;
res.pop();
res.push(temp);
}
if(tokens[i]=="-")
{
int temp=res.top();
res.pop();
temp=res.top()-temp;
res.pop();
res.push(temp);
}
}
else
{
res.push(stoi(tokens[i]));
}
}
return res.top();
}
};
本文介绍了一种基于栈的数据结构解决逆波兰表达式求值问题的方法。通过遍历表达式,利用栈的先进后出特性,实现了对整数和运算符的有效处理,解决了整数除法只保留整数部分的问题,并提供了详细的代码实现。
677

被折叠的 条评论
为什么被折叠?



