【CV系列】图像算法之七:特征提取算法之LBP

本文深入探讨了LBP(局部二值模式)算法,详细介绍了其原理、旋转不变模式、等价模式,以及在纹理特征提取和人脸识别中的应用。LBP算子因其旋转不变性和灰度不变性在图像处理领域广泛应用。
摘要由CSDN通过智能技术生成

  目录

1、LBP特征的描述

(1)圆形LBP算子:

(2)LBP旋转不变模式

(3)LBP等价模式

2、LBP特征用于检测的原理

3、对LBP特征向量进行提取的步骤

4、LBP算法实现

5、LBP算法在人脸识别中的应用


【2016/9/29】今天重点学习了纹理特征提取算法LBP,这个算法可以用于纹理特征提取和人脸识别,应用比较广泛。首先介绍LBP算法的原理,然后是LBP特征的提取步骤,最后使用OpenCV实现了这个算法。    

   LBP(Local Binary Pattern,局部二值模式)是一种用来描述图像局部纹理特征的算子;它具有旋转不变性和灰度不变性等显著的优点。它是首先由T. Ojala, M.Pietikäinen, 和D. Harwood 在1994年提出,用于纹理特征提取。而且,提取的特征是图像的局部的纹理特征。

1、LBP特征的描述

原始的LBP算子定义为在3*3的窗口内,以窗口中心像素为阈值,将相邻的8个像素的灰度值与其进行比较,若周围像素值大于中心像素值,则该像素 点的位置被标记为1,否则为0。这样,3*3邻域内的8个点经比较可产生8位二进制数(通常转换为十进制数即LBP码,共256种),即得到该窗口中心像 素点的LBP值,并用这个值来反映该区域的纹理信息。如下图所示:

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

飞翔的鲲

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值