题意 求起点到终点 的 一个路径 使路径上最短边最长
性质:我们将 满足题意的从起点到点N的路径 记为Path(N)
在Path(N) 上 N 的前一个节点 为pre
那么在Path(N)上从起点到pre的路径 就是 Path(pre )
否则我们可以将Path(pre)替换这条路径 Path(N)上的最短边只会更长
代码:
#include <cstdio>
#include <iostream>
#include <queue>
#include <cstring>
#include <cmath>
#define sf scanf
#define pf printf
#define pow2(i) ( (i) * (i) )
using namespace std;
const int maxn = 1005;
const int INF = 0x3f3f3f3f;
int Adj[maxn][maxn];
int vis[maxn];
int dis[maxn];
int n,m;
bool read(){
sf("%d %d",&n,&m);
memset(Adj,0x3f,sizeof(Adj));
for(int i = 0;i < m;++i){
int u,v,w;sf("%d%d%d",&u,&v,&w);
Adj[u][v] = Adj[v][u] = w;
}
return n;
}
int dijkstra(){
for(int i = 0;i <= n;++i){
vis[i] = 0;
dis[i] = INF;
Adj[i][i] = 0;
}
dis[1] = 0;
vis[1] = 1;
for(int i = 1;i <= n;++i){
dis[i] = Adj[1][i];
}
for(int i = 1;i < n;++i){
int lable = -1;
int temp = -1;
for(int j = 1;j <= n;++j){
if(!vis[j] && dis[j] != INF && temp < dis[j]){
temp = dis[lable = j];
}
}
if(lable == -1) break;
vis[lable] = 1;
if(lable == n){
return dis[n];
}
for(int j = 1;j <= n;++j){
if(!vis[j] && Adj[lable][j] != INF){
if(dis[j] == INF) dis[j] = min( dis[lable],Adj[lable][j] );
else dis[j] = max(dis[j],min( dis[lable],Adj[lable][j] ) );
}
}
}
return dis[n];
}
int main(){
int Case;sf("%d",&Case);
while(Case--){
read();
static int T = 0;
pf("Scenario #%d:\n",++T);
pf("%d\n",dijkstra());
if(Case) pf("\n");
}
return 0;
}