POJ 1797 图论 Dijkstra

题目链接

题意 求起点到终点 的 一个路径 使路径上最短边最长

性质:我们将 满足题意的从起点到点N的路径 记为Path(N)
在Path(N) 上 N 的前一个节点 为pre
那么在Path(N)上从起点到pre的路径 就是 Path(pre )
否则我们可以将Path(pre)替换这条路径 Path(N)上的最短边只会更长

代码:

#include <cstdio>
#include <iostream>
#include <queue>
#include <cstring>
#include <cmath>
#define sf scanf
#define pf printf
#define pow2(i) ( (i) * (i) )
using namespace std;
const int maxn = 1005;
const int INF = 0x3f3f3f3f;
int Adj[maxn][maxn];
int vis[maxn];
int dis[maxn];
int n,m;


bool read(){
    sf("%d %d",&n,&m);
    memset(Adj,0x3f,sizeof(Adj));
    for(int i = 0;i < m;++i){
        int u,v,w;sf("%d%d%d",&u,&v,&w);
        Adj[u][v] = Adj[v][u] = w;
    }
    return n;
}

int dijkstra(){
    for(int i = 0;i <= n;++i){
        vis[i] = 0;
        dis[i] = INF;
        Adj[i][i] = 0;
    }

    dis[1] = 0;
    vis[1] = 1;
    for(int i = 1;i <= n;++i){
        dis[i] = Adj[1][i];
    }

    for(int i = 1;i < n;++i){
        int lable = -1;
        int temp = -1;
        for(int j = 1;j <= n;++j){
            if(!vis[j] && dis[j] != INF && temp < dis[j]){
                temp = dis[lable = j];
            }
        }
        if(lable == -1) break;
        vis[lable] = 1;
        if(lable == n){
            return dis[n];
        }

        for(int j = 1;j <= n;++j){
            if(!vis[j] && Adj[lable][j] != INF){
                if(dis[j] == INF) dis[j] = min( dis[lable],Adj[lable][j] );
                else dis[j] = max(dis[j],min( dis[lable],Adj[lable][j] ) );
            }
        }
    }
    return dis[n];
}



int main(){
    int Case;sf("%d",&Case);
    while(Case--){
        read();
        static int T = 0;
        pf("Scenario #%d:\n",++T);
        pf("%d\n",dijkstra());
        if(Case) pf("\n");
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值