HDU 5289 Assignment ST + 二分区间

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5289
题意: 求多少个区间[l,r] 有MAX[l,r] - MIN[l,r] < k
令F[l,r] = MAX[l,r] - MIN[l,r]
对于固定的左区间l,F[l,r]是一个非减序列,所以我们可以二分找到小于K的最右边界
ST预处理一边就可以在O(1)计算F值
代码如下:

#include <bits/stdc++.h>

using namespace std;
const int maxn = 100000 + 5;
int a[maxn];
int max_st[maxn][32],min_st[maxn][32];
void init_st(int n){
    for(int i = 1;i <= n;++i) max_st[i][0] = min_st[i][0] = a[i];
    for(int j = 1;1 << j <= n;++j){
        for(int i = 1;i + (1 << j) - 1 <= n;++i){
            max_st[i][j] = max(max_st[i][j - 1],max_st[i + (1 << (j - 1))][j - 1]);
            min_st[i][j] = min(min_st[i][j - 1],min_st[i + (1 << (j - 1))][j - 1]);
        }
    }
}

int min_rmq(int l,int r){
    int k = 0;
    while(l + (1 << (k + 1)) - 1 <= r) k++;
    return min(min_st[l][k],min_st[r - (1 << k) + 1][k]);
}

int max_rmq(int l,int r){
    int k = 0;
    while(l + (1 << (k + 1)) - 1 <= r) k++;
    return max(max_st[l][k],max_st[r - (1 << k) + 1][k]);
}
int query(int l,int r){
    return max_rmq(l,r) - min_rmq(l,r);
}
typedef __int64 INT;
int main(){
    int T;scanf("%d",&T);
    while( T-- ){
        int n,k;
        INT ans = 0;scanf("%d %d",&n,&k);
        for(int i = 1;i <= n;++i){
            scanf("%d",&a[i]);
        }
        init_st(n);
        for(int i = 1;i <= n;++i){
            int l = i , r = n,mid;
            while(l < r){
                mid = (l + r + 1) >> 1;
                if(query(i,mid) < k) l = mid;
                else r = mid - 1;
            }
            ans += (l - i + 1);
        }
        printf("%I64d\n",ans);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值