题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5289
题意: 求多少个区间[l,r] 有MAX[l,r] - MIN[l,r] < k
令F[l,r] = MAX[l,r] - MIN[l,r]
对于固定的左区间l,F[l,r]是一个非减序列,所以我们可以二分找到小于K的最右边界
ST预处理一边就可以在O(1)计算F值
代码如下:
#include <bits/stdc++.h>
using namespace std;
const int maxn = 100000 + 5;
int a[maxn];
int max_st[maxn][32],min_st[maxn][32];
void init_st(int n){
for(int i = 1;i <= n;++i) max_st[i][0] = min_st[i][0] = a[i];
for(int j = 1;1 << j <= n;++j){
for(int i = 1;i + (1 << j) - 1 <= n;++i){
max_st[i][j] = max(max_st[i][j - 1],max_st[i + (1 << (j - 1))][j - 1]);
min_st[i][j] = min(min_st[i][j - 1],min_st[i + (1 << (j - 1))][j - 1]);
}
}
}
int min_rmq(int l,int r){
int k = 0;
while(l + (1 << (k + 1)) - 1 <= r) k++;
return min(min_st[l][k],min_st[r - (1 << k) + 1][k]);
}
int max_rmq(int l,int r){
int k = 0;
while(l + (1 << (k + 1)) - 1 <= r) k++;
return max(max_st[l][k],max_st[r - (1 << k) + 1][k]);
}
int query(int l,int r){
return max_rmq(l,r) - min_rmq(l,r);
}
typedef __int64 INT;
int main(){
int T;scanf("%d",&T);
while( T-- ){
int n,k;
INT ans = 0;scanf("%d %d",&n,&k);
for(int i = 1;i <= n;++i){
scanf("%d",&a[i]);
}
init_st(n);
for(int i = 1;i <= n;++i){
int l = i , r = n,mid;
while(l < r){
mid = (l + r + 1) >> 1;
if(query(i,mid) < k) l = mid;
else r = mid - 1;
}
ans += (l - i + 1);
}
printf("%I64d\n",ans);
}
}