一、题目
给定一个正数数列,我们可以从中截取任意的连续的几个数,称为片段。例如,给定数列{0.1, 0.2, 0.3, 0.4},我们有(0.1) (0.1, 0.2) (0.1, 0.2, 0.3) (0.1, 0.2, 0.3, 0.4) (0.2) (0.2, 0.3) (0.2, 0.3, 0.4) (0.3) (0.3, 0.4) (0.4) 这10个片段。
给定正整数数列,求出全部片段包含的所有的数之和。如本例中10个片段总和是0.1 + 0.3 + 0.6 + 1.0 + 0.2 + 0.5 + 0.9 + 0.3 + 0.7 + 0.4 = 5.0。
输入格式:
输入第一行给出一个不超过105的正整数N,表示数列中数的个数,第二行给出N个不超过1.0的正数,是数列中的数,其间以空格分隔。
输出格式:
在一行中输出该序列所有片段包含的数之和,精确到小数点后2位。
输入样例:
4
0.1 0.2 0.3 0.4
输出样例:
5.00
二、个人理解
本题主要考察阅读理解(滑稽)。只要读懂题目不难发现与其去求一个个数列,不如去求数在数列中的数目,而这很容易得出。
关键点:
- 一定要注意溢出啊啊啊!!!
C++:
#include <iostream>
#include <stdio.h>
using namespace std;
int main()
{
int nums;
cin >> nums;
double a, sum = 0.0;
for (int i = 0; i < nums; i++) {
cin >> a;
sum += (long) (nums - i) * (long) (i + 1) * a ; //两个int类型相乘可能溢出
}
printf("%.2lf", sum );
}