栅格数据结构
栅格结构是以规则的阵列来表示空间地物或现象分布的数据组织,组织中的每个数据表示地物或现象的非几何属性特征。
栅格结构的显著特点:属性明显,定位隐含,即数据直接记录属性的指针或数据本身,而所在位置则根据行列号转换为相应的坐标。
栅格数据的编码方法:直接栅格编码,就是将栅格数据看作一个数据矩阵,逐行(或逐列)逐个记录代码;压缩编码,包括
链码(弗里曼链码)比较适合存储图形数据;
游程长度编码通过记录行或列上相邻若干属性相同点的代码来实现;
块码是有成长度编码扩展到二维的情况,采用方形区域为记录单元;
四叉树编码是最有效的栅格数据压缩编码方法之一,还能提高图形操作效率,具有可变的分辨率。
矢量数据结构
矢量数据结构是通过记录坐标的方式尽可能精确地表示点、线和多边形等地理实体,坐标空间设为连续,允许任意位置、长度和面积的精确定义。
矢量结构的显著特点:定位明显,属性隐含。
矢量数据的编码方法:
对于点实体和线实体,直接记录空间信息和属性信息;
对于多边形地物,有坐标序列法、树状索引编码法和拓扑结构编码法。坐标序列法是由多边形边界的x,y坐标对集合及说明信息组成,是最简单的一种多边形矢量编码法,文件结构简单,但多边形边界被存储两次产生数据冗余,而且缺少邻域信息;树状索引编码法是将所有边界点进行数字化,顺序存储坐标对,由点索引与边界线号相联系,以线索引与各多边形相联系,形成树状索引结构,消除了相邻多边形边界数据冗余问题;拓扑结构编码法是通过建立一个完整的拓扑关系结构,彻底解决邻域和岛状信息处理问题的方法,但增加了算法的复杂性和数据库的大小。
矢量栅格数据的比较
矢量数据的优缺点:
优点为数据结构紧凑、冗余度低,有利于网络和检索分析,图形显示质量好、精度高;
缺点为数据结构复杂,多边形叠加分析比较困难。
栅格数据的优缺点:
优点为数据结构简单,便于空间分析和地表模拟,现势性较强;
缺点为数据量大,投影转换比较复杂。
两者比较:
栅格数据操作总的来说容易实现,矢量数据操作则比较复杂;
栅格结构是矢量结构在某种程度上的一种近似,对于同一地物达到于矢量数据相同的精度需要更大量的数据;在坐标位置搜索、计算多边形形状面积等方面栅格结构更为有效,而且易于遥感相结合,易于信息共享;矢量结构对于拓扑关系的搜索则更为高效,网络信息只有用矢量才能完全描述,而且精度较高。对于地理信息系统软件来说,两者共存,各自发挥优势是十分有效的。
矢量栅格相互转换算法
矢量转栅格:内部点扩散法,即由多边形内部种子点向周围邻点扩散,直至到达各边界为止;复数积分算法,即由待判别点对多边形的封闭边界计算复数积分,来判断两者关系;射线算法和扫描算法,即由图外某点向待判点引射线,通过射线与多边形边界交点数来判断内外关系;边界代数算法,是一种基于积分思想的矢量转栅格算法,适合于记录拓扑关系的多边形矢量数据转换,方法是由多边形边界上某点开始,顺时针搜索边界线,上行时边界左侧具有相同行坐标的栅格减去某值,下行时边界左侧所有栅格点加上该值,边界搜索完毕之后即完成多边形的转换。
栅格转矢量:即是提取具有相同编号的栅格集合表示的多边形区域的边界和边界的拓扑关系,并表示成矢量格式边界线的过程。步骤包括:多边形边界提取,即使用高通滤波将栅格图像二值化;边界线追踪,即对每个弧段由一个节点向另一个节点搜索;拓扑关系生成和去处多余点及曲线圆滑。