AcWing算法基础课笔记——欧拉函数、快速幂、扩展欧几里得算法

欧拉函数

欧拉函数:小于等于 n 的正整数中与 n 互质 的数的数目

如果一个数N可以被写成
N = p 1 α 1 × p 2 α 2 ⋯ × p k α k N= p_{1}^{\alpha_1}\times p_{2}^{\alpha_2} \dots \times p_{k}^{\alpha_k} N=p1α1×p2α2×pkαk
那么欧拉函数
ϕ ( N ) = N ( 1 − 1 p 1 ) ( 1 − 1 p 2 ) … ( 1 − 1 p k ) \phi(N) = N(1-\frac{1}{p_1})(1-\frac{1}{p_2}) \dots (1-\frac{1}{p_k}) ϕ(N)=N(1p11)(1p21)(1pk1)

题目——欧拉函数

给定 n 个正整数 ai,请你求出每个数的欧拉函数。

输入格式
第一行包含整数 n。

接下来 n 行,每行包含一个正整数 ai。

输出格式
输出共 n 行,每行输出一个正整数 ai 的欧拉函数。

数据范围
1≤n≤100,
1≤ai≤2×10^9

输入样例:
3
3
6
8

输出样例:
2
2
4

代码——用公式求
#include<iostream>
using namespace std;

int main() {
	int n;
	cin >> n;
	while(n -- ) {
		int a;
		scanf("%d", &a);
		
		int res = a;
		for(int i = 2; i <= a / i; i ++ ) {
			if(a % i == 0) res = res / i * (i - 1);
			while(a % i == 0) a /= i;
		}
		
		if(a > 1) res = res / a * (a - 1);
		
		printf("%d\n", res);
	}
	
	return 0;
} 

题目——筛法求欧拉函数

代码
#include<iostream>
#include<algorithm>

using namespace std;

typedef long long LL;

const int N = 1e6 + 10;

int primes[N], cnt;
int phi[N];
bool st[N];

int get_eulers(int n) {
	phi[1] = 1; 
	for(int i = 2; i <= n; i ++ ){
		if(!st[i]) {
			primes[cnt ++ ]  = i;
			phi[i] = i - 1;
		}
		for(int j = 0; primes[j] <= n / i; j ++ ) {
			st[primes[j] * i] = true;
			if(i % primes[j] == 0) {
				phi[primes[j] * i] = phi[i] * primes[j];
				break;
			}
			phi[primes[j] * i] =  phi[i] * (primes[j] - 1);
		}
	}
	
	LL res = 0;
	for(int i = 1; i <= n;  i ++ ) res += phi[i];
	return res;
}

int main() {
	int n;
	cin >> n;
	cout << get_eulers(n) << endl;
	
	return 0;
}

快速幂

题目——快速幂

题目描述

给定 n 组 ai,bi,pi,对于每组数据,求出 aibi mod pi 的值。

输入输出格式

输入

第一行包含整数 n。
接下来 n 行,每行包含三个整数 ai,bi,pi

输出

对于每组数据,输出一个结果,表示 aibi mod pi 的值。
每个结果占一行。

输入输出样例

输入

2
3 2 5
4 3 9

输出

4
1

代码

#include<iostream>
#include<algorithm>

using namespace std;

typedef long long LL;

int qmi(int a, int k, int p) {
	int res = 1;
	while(k) {
		if(k & 1) res = (LL) res * a % p;
		k >>= 1;
		a = (LL)a * a % p;
	}
	return res;
}

int main() {
	int n;
	scanf("%d", &n);
	while(n -- ) {
		int a, k, p;
		scanf("%d%d%d", &a, &k, &p);
		
		printf("%d\n", qmi(a, k, p));
	}
	
	return 0;
} 

扩展欧几里得算法

题目

题目描述

给定 𝑛 对正整数𝑎𝑖,𝑏𝑖,对于每对数,求出一组𝑥𝑖,𝑦𝑖,使其满足𝑎𝑖×𝑥𝑖+𝑏𝑖×𝑦𝑖=𝑔𝑐𝑑(𝑎𝑖,𝑏𝑖)。

输入格式

第一行包含整数𝑛。

接下来𝑛 行,每行包含两个整数𝑎𝑖,𝑏𝑖。

输出格式
输出共 𝑛 行,对于每组𝑎𝑖,𝑏𝑖,求出一组满足条件的𝑥𝑖,𝑦𝑖,每组结果占一行。

本题答案不唯一,输出任意满足条件的𝑥𝑖,𝑦𝑖 均可。

数据范围
1≤𝑛≤105
1≤𝑎𝑖,𝑏𝑖≤2×109

输入样例

2
4 6
8 18

输出样例

-1 1
-2 1

代码

#include<iostream>

using namespace std;

int exgcd(int a, int b, int &x, int &y) {
	if(!b) {
		x = 1, y = 0;
		return a;
	}
	
	int d = exgcd(b, a % b, y, x);
	y = y - a / b * x;
	return d;
}

int main() {
	int n;
	scanf("%d", &n);
	
	while(n -- ) {
		int a, b, x, y;
		scanf("%d%d", &a, &b);
		
		exgcd(a, b, x, y);
		
		printf("%d %d\n", x, y);
	}
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值