欧拉函数
欧拉函数:小于等于 n 的正整数中与 n 互质 的数的数目
如果一个数N可以被写成
N
=
p
1
α
1
×
p
2
α
2
⋯
×
p
k
α
k
N= p_{1}^{\alpha_1}\times p_{2}^{\alpha_2} \dots \times p_{k}^{\alpha_k}
N=p1α1×p2α2⋯×pkαk
那么欧拉函数
ϕ
(
N
)
=
N
(
1
−
1
p
1
)
(
1
−
1
p
2
)
…
(
1
−
1
p
k
)
\phi(N) = N(1-\frac{1}{p_1})(1-\frac{1}{p_2}) \dots (1-\frac{1}{p_k})
ϕ(N)=N(1−p11)(1−p21)…(1−pk1)
题目——欧拉函数
给定 n 个正整数 ai,请你求出每个数的欧拉函数。
输入格式
第一行包含整数 n。
接下来 n 行,每行包含一个正整数 ai。
输出格式
输出共 n 行,每行输出一个正整数 ai 的欧拉函数。
数据范围
1≤n≤100,
1≤ai≤2×10^9
输入样例:
3
3
6
8
输出样例:
2
2
4
代码——用公式求
#include<iostream>
using namespace std;
int main() {
int n;
cin >> n;
while(n -- ) {
int a;
scanf("%d", &a);
int res = a;
for(int i = 2; i <= a / i; i ++ ) {
if(a % i == 0) res = res / i * (i - 1);
while(a % i == 0) a /= i;
}
if(a > 1) res = res / a * (a - 1);
printf("%d\n", res);
}
return 0;
}
题目——筛法求欧拉函数
代码
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long LL;
const int N = 1e6 + 10;
int primes[N], cnt;
int phi[N];
bool st[N];
int get_eulers(int n) {
phi[1] = 1;
for(int i = 2; i <= n; i ++ ){
if(!st[i]) {
primes[cnt ++ ] = i;
phi[i] = i - 1;
}
for(int j = 0; primes[j] <= n / i; j ++ ) {
st[primes[j] * i] = true;
if(i % primes[j] == 0) {
phi[primes[j] * i] = phi[i] * primes[j];
break;
}
phi[primes[j] * i] = phi[i] * (primes[j] - 1);
}
}
LL res = 0;
for(int i = 1; i <= n; i ++ ) res += phi[i];
return res;
}
int main() {
int n;
cin >> n;
cout << get_eulers(n) << endl;
return 0;
}
快速幂
题目——快速幂
题目描述 :
给定 n 组 ai,bi,pi,对于每组数据,求出 aibi mod pi 的值。
输入输出格式 :
输入
第一行包含整数 n。
接下来 n 行,每行包含三个整数 ai,bi,pi
输出
对于每组数据,输出一个结果,表示 aibi mod pi 的值。
每个结果占一行。
输入输出样例 :
输入
2
3 2 5
4 3 9
输出
4
1
代码
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long LL;
int qmi(int a, int k, int p) {
int res = 1;
while(k) {
if(k & 1) res = (LL) res * a % p;
k >>= 1;
a = (LL)a * a % p;
}
return res;
}
int main() {
int n;
scanf("%d", &n);
while(n -- ) {
int a, k, p;
scanf("%d%d%d", &a, &k, &p);
printf("%d\n", qmi(a, k, p));
}
return 0;
}
扩展欧几里得算法
题目
题目描述
给定 𝑛 对正整数𝑎𝑖,𝑏𝑖,对于每对数,求出一组𝑥𝑖,𝑦𝑖,使其满足𝑎𝑖×𝑥𝑖+𝑏𝑖×𝑦𝑖=𝑔𝑐𝑑(𝑎𝑖,𝑏𝑖)。
输入格式
第一行包含整数𝑛。
接下来𝑛 行,每行包含两个整数𝑎𝑖,𝑏𝑖。
输出格式
输出共 𝑛 行,对于每组𝑎𝑖,𝑏𝑖,求出一组满足条件的𝑥𝑖,𝑦𝑖,每组结果占一行。
本题答案不唯一,输出任意满足条件的𝑥𝑖,𝑦𝑖 均可。
数据范围
1≤𝑛≤105
1≤𝑎𝑖,𝑏𝑖≤2×109
输入样例
2
4 6
8 18
输出样例
-1 1
-2 1
代码
#include<iostream>
using namespace std;
int exgcd(int a, int b, int &x, int &y) {
if(!b) {
x = 1, y = 0;
return a;
}
int d = exgcd(b, a % b, y, x);
y = y - a / b * x;
return d;
}
int main() {
int n;
scanf("%d", &n);
while(n -- ) {
int a, b, x, y;
scanf("%d%d", &a, &b);
exgcd(a, b, x, y);
printf("%d %d\n", x, y);
}
}