自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(68)
  • 收藏
  • 关注

原创 SwanLab x Swift:一站式大模型训练工具链,让模型进化更轻松(附教程)

探索如何利用 Modelscope Swift 和 SwanLab 进行高效的模型训练与实验跟踪!Swift 是 ModelScope 社区推出的强大框架,支持 450+ 大型语言模型和 150+ 多模态模型的训练、微调、推理与部署。无论是轻量级技术如 LoRA、QLoRA、LongLoRA,还是人工对齐方法如 DPO、PPO、ORPO,Swift 都能轻松应对。

2025-02-18 17:13:38 834

原创 GDC2025 | DeepSeek-Qwen 模型蒸馏极限挑战赛,来了!(预赛报名)

2025全球开发者先锋大会(GDC)| 魔乐社区与SwanLab平台联合举办的 DeepSeek-Qwen 模型蒸馏极限挑战赛!本赛事将作为2025全球开发者先锋大会(GDC)的活动之一,欢迎具备大模型训练/微调实战经验的独立开发者前来挑战!详细报名规则见后文。报名时间:2025年2月16日~20日12时。

2025-02-16 17:26:20 365

原创 集成SwanLab与HuggingFace TRL:跟踪与优化强化学习实验

TRL是一个领先的Python库,旨在通过监督微调(SFT)、近端策略优化(PPO)和直接偏好优化(DPO)等先进技术,对基础模型进行训练后优化。TRL 建立在 🤗 Transformers 生态系统之上,支持多种模型架构和模态,并且能够在各种硬件配置上进行扩展。你可以使用Trl快速进行模型训练,同时使用SwanLab进行实验跟踪与可视化。是适配于Transformers的日志记录类。

2025-02-08 20:32:24 321

原创 SwanLab x verl:可视化LLM强化学习后训练教程

verl是一个灵活、高效且可用于生产环境的强化学习(RL)训练框架,专为大型语言模型(LLMs)的后训练设计。它由字节跳动火山引擎团队开源,是HybridFlow论文的开源实现。verl目前已经被很多优秀的项目采用,如TinyZeroRAGENLogic R1等。verl 具有以下特点,使其灵活且易于使用:易于扩展的多样化 RL 算法:Hybrid 编程模型结合了单控制器和多控制器范式的优点,能够灵活表示并高效执行复杂的后训练数据流。用户只需几行代码即可构建 RL 数据流。

2025-02-08 16:01:23 1253

原创 DQN深度强化学习:CartPole倒立摆任务(完整代码)

🚀 DQN实战:3分钟极速训练倒立摆控制模型 | 附完整代码+可视化训练;📌 核心技术亮点:DQN双剑合璧:融合深度神经网络与Q-Learning,通过经验回放打破数据关联性,目标网络稳定训练过程,解决高维状态空间难题;CartPole极简环境:4维状态空间+2个离散动作,完美契合入门级深度强化学习实战(附环境配置指南)

2025-02-07 15:30:50 1191

原创 SmolAgents快速上手:最优雅的Agent构建工具

smolagents是HuggingFace官方推出的Agent开发库,HF出品的库,往往的设计理念是“低门槛,高天花板,可拓展”,所以知道HF出了Agent相关的框架后,也是很快体验了一下。首先来介绍一下smolagents吧,smol是small的俏皮用法,故smolagents的含义是“轻量的agent工具”。smolagents库提供:✨:Agent逻辑仅需约千行代码即可实现。在原生代码之上,我们将抽象保持至最简形态!🌐。

2025-01-25 16:48:29 1133

原创 MiniCPM-o-2.6 多模态大模型微调实战(完整代码)

MiniCPM-O-2.6 多模态大模型微调实战。本文我们将简要介绍基于 transformers、peft 等框架,使用 MiniCPM-O-2.6 模型在上进行Lora微调训练,同时使用监控训练过程与评估模型效果。

2025-01-25 14:14:23 1181

原创 Qwen2.5大模型微调实战:医疗命名实体识别(NER)任务(完整代码)

带你从零开始,手把手教你如何通过指令微调Qwen2.5大语言模型,完成医学命名实体识别(NER)任务。本文详细介绍了如何使用transformers、peft等框架,结合SwanLab可视化工具,在医学数据集上进行Lora微调训练。无论你是AI新手还是进阶开发者,这篇教程都能帮助你快速上手大模型微调,掌握NER任务的核心技术。立即跟随教程,开启你的AI训练之旅!

2025-01-21 17:52:43 1185

原创 如何命令行退出swanlab账号

SwanLab命令行退出登录教程。

2025-01-17 23:25:57 121

原创 SwanLab环境变量列表

SwanLab环境变量列表,包含SWANLAB_SAVE_DIR、SWANLAB_LOG_DIR、SWANLAB_MODE等常用的环境变量

2025-01-17 23:22:06 286

原创 SwanLab使用技巧:与PyTorch Lightning集成使用

PyTorch Lightning与SwanLab配合训练。是一个开源的机器学习库,它建立在 PyTorch 之上,旨在帮助研究人员和开发者更加方便地进行深度学习模型的研发。Lightning 的设计理念是将模型训练中的繁琐代码与研究代码分离,从而使研究人员可以专注于研究本身,而不是底层的工程细节。SwanLabLogger是适配于PyTorch Lightning的日志记录类。你可以使用PyTorch Lightning快速进行模型训练,同时使用。进行实验跟踪与可视化。

2025-01-17 19:17:54 262

原创 SwanLab使用技巧:一行代码同步Wandb

SwanLab与Wandb类似,专为国内用户设计,支持实验跟踪和模型优化。通过swanlab.sync_wandb()命令,可同步Wandb指标至SwanLab,或使用swanlab convert将Wandb项目迁移至SwanLab,实现无缝过渡和高效管理。

2025-01-17 19:10:18 937

原创 SwanLab x LLaMA Factory:国产开源AI训练工具组合拳(含教程)

我们非常高兴地宣布SwanLab与LLaMA Factory建立合作伙伴关系,致力于为中国训练者提供优质、高效的大模型训练体验。现在你使用新版本的LLaMA Factory启动训练前,可以在WebUI的「SwanLab configurations」(中文:SwanLab参数设置)卡片中勾选「Use SwanLab」,就可以通过SwanLab强大的训练看板进行这一次大模型微调的跟踪、记录与可视化。

2024-12-31 13:43:40 1407

原创 如何在手机上看AI训练(基于SwanLab)

你一定遇到过,实验正在training,但你不在电脑旁边 —— 也许在运动、在通勤、或者刚刚起床,十分想瞄一眼实验的进展和结果。这个时候,,会是绝佳组合。下面将介绍如何将SwanLab添加到你的手机主屏幕,以接近APP的体验,快速访问SwanLab。

2024-12-25 21:37:04 264

原创 Qwen2-VL多模态大模型微调实战教程

Qwen2-VL是通义千问团队最近开源的大语言模型,由阿里云通义实验室研发。以Qwen2-VL作为基座多模态大模型,通过的方式实现特定场景下的OCR,是学习的入门任务。本文我们将简要介绍基于 transformers、peft 等框架,使用 Qwen2-VL-2B-Instruct 模型在上进行Lora微调训练,同时使用监控训练过程与评估模型效果。

2024-12-04 20:21:35 3234 1

原创 Qwen2-VL视觉大模型微调实战:LaTex公式OCR识别任务(完整代码)

SwanLab机器学习实战教程是一个主打「开箱即用」的AI训练系列教程,我们致力于提供手把手帮助你跑起训练。Qwen2-VL是通义千问团队最近开源的大语言模型,由阿里云通义实验室研发。以Qwen2-VL作为基座多模态大模型,通过的方式实现特定场景下的OCR,是学习的入门任务。本文我们将简要介绍基于 transformers、peft 等框架,使用 Qwen2-VL-2B-Instruct 模型在上进行Lora微调训练,同时使用监控训练过程与评估模型效果。

2024-12-04 16:01:38 1128 2

原创 Qwen2-VL-2B模型微调实战-COCO2014数据集-SwanLab可视化记录

本文我们将简要介绍基于 transformers、peft 等框架,使用 Qwen2-VL-2B-Instruct 模型在上进行Lora微调训练,同时使用监控训练过程与评估模型效果。

2024-11-16 19:41:44 1256 4

原创 SwanLab安装教程

其提供了友好的API和漂亮的界面,结合了超参数跟踪、指标记录、在线协作、实验链接分享、实时消息通知等功能,让您可以快速跟踪ML实验、可视化过程、分享给同伴。SwanLab是一款开源、轻量级的AI实验跟踪工具,提供了一个跟踪、比较、和协作实验的平台,旨在加速AI研发团队100倍的研发效率。借助SwanLab,科研人员可以沉淀自己的每一次训练经验,与合作者无缝地交流和协作,机器学习工程师可以更快地开发可用于生产的模型。

2024-11-16 19:38:51 381

原创 Qwen2-VL多模态大模型微调实战(完整代码)

Qwen2-VL多模态大模型微调实战。本文我们将简要介绍基于 transformers、peft 等框架,使用 Qwen2-VL-2B-Instruct 模型在上进行Lora微调训练,同时使用监控训练过程与评估模型效果。

2024-11-15 21:23:54 7413 16

原创 PyTorch音频分类实战(完整代码)

PyTorch音频分类实战,完整代码+数据集+实验日志。音频分类任务是指将音频信号按照其内容的类别归属进行划分。例如,区分一段音频是音乐、语音、环境声音(如鸟鸣、雨声、机器运转声)还是动物叫声等。其目的是通过自动分类的方式,高效地对大量音频数据进行组织、检索和理解。

2024-11-11 16:51:48 2337 1

原创 swanlab api key粘贴不上解决方法

粘贴不了”这个现象,是因为命令行在输入密码的时候,会不显示出来,但实际上已经输入了。的时候,粘贴一次API Key后,直接按下回车,就可以登录完成。运行这个python脚本,就可以完成登录。登录完成后,下次运行就不用再次登录了。

2024-11-11 00:06:02 317 1

原创 PaddleYOLO目标检测训练(集成SwanLab可视化全过程)

PaddleYolo 是飞桨(PaddlePaddle)框架下的一个目标检测库,主要用于图像和视频中的物体检测。PaddleYOLO包含YOLO系列模型的相关代码,支持YOLOv3、PP-YOLO、PP-YOLOv2、PP-YOLOE、PP-YOLOE+、RT-DETR、YOLOX、YOLOv5、YOLOv6、YOLOv7、YOLOv8、YOLOv5u、YOLOv7u、YOLOv6Lite、RTMDet等模型。

2024-11-09 14:30:38 995

原创 如何从Wandb迁移到SwanLab

SwanLab 是一个开源的模型训练记录工具,面向AI研究者,提供了训练可视化、自动日志记录、超参数记录、实验对比、多人协同等功能。在SwanLab上,研究者能基于直观的可视化图表发现训练问题,对比多个实验找到研究灵感,并通过在线链接的分享与基于组织的多人协同训练,打破团队沟通的壁垒。为什么要记录训练相较于软件开发,模型训练更像一个实验科学。一个品质优秀的模型背后,往往是成千上万次实验。研究者需要不断尝试、记录、对比,积累经验,才能找到最佳的模型结构、超参数与数据配比。

2024-10-27 16:28:42 343

原创 将Tensorboard日志转换为SwanLab项目

SwanLab 是一个开源的模型训练记录工具,面向AI研究者,提供了训练可视化、自动日志记录、超参数记录、实验对比、多人协同等功能。在SwanLab上,研究者能基于直观的可视化图表发现训练问题,对比多个实验找到研究灵感,并通过在线链接的分享与基于组织的多人协同训练,打破团队沟通的壁垒。为什么要记录训练相较于软件开发,模型训练更像一个实验科学。一个品质优秀的模型背后,往往是成千上万次实验。研究者需要不断尝试、记录、对比,积累经验,才能找到最佳的模型结构、超参数与数据配比。

2024-10-27 16:24:24 921

原创 SwanLab VSCode插件已发布,附使用教程

SwanLab 提供了友好的 API 和漂亮的界面,结合了超参数跟踪、指标记录、在线协作、实验链接分享等功能,让您可以快速跟踪 AI 实验、可视化过程、记录超参数,并分享给伙伴。SwanLab 是一款开源、轻量的 AI 实验跟踪工具,提供了一个跟踪、比较、和协作实验的平台。在VSCode中使用。

2024-10-19 15:00:22 277

原创 GLM4大模型微调入门实战-命名实体识别(NER)任务

基于GLM4-7B大模型,实现命名实体识别(NER)任务,是学习LLM微调非常好的入门任务之一,本文将提供完整的代码、模型、数据以及SwanLab实验过程,来帮助你学习如何进行微调。

2024-06-21 17:18:48 4592 11

原创 Qwen2大模型微调入门实战-命名实体识别(NER)任务(完整代码)

基于Qwen2-1.5B大模型,实现命名实体识别(NER)任务,是学习LLM微调非常好的入门任务之一,本文将提供完整的代码、模型、数据以及SwanLab实验过程,来帮助你学习如何进行微调。

2024-06-20 14:29:05 3860 4

原创 最实战的GLM4微调入门:从文本分类开始

大模型指令微调(Instruction Tuning)是一种针对大型预训练语言模型的微调技术,其核心目的是增强模型理解和执行特定指令的能力,使模型能够根据用户提供的自然语言指令准确、恰当地生成相应的输出或执行相关任务。指令微调特别关注于提升模型在遵循指令方面的一致性和准确性,从而拓宽模型在各种应用场景中的泛化能力和实用性。在实际应用中,我的理解是,指令微调更多把LLM看作一个更智能、更强大的传统NLP模型(比如Bert),来实现更高精度的文本预测任务。

2024-06-20 12:32:01 2239 1

原创 最实战的Qwen2微调入门:从文本分类开始

以Qwen2作为基座大模型,通过指令微调的方式实现高准确率的文本分类,是学习的入门任务。指令微调是一种通过在由(指令,输出)对组成的数据集上进一步训练LLMs的过程。其中,指令代表模型的人类指令,输出代表遵循指令的期望输出。这个过程有助于弥合LLMs的下一个词预测目标与用户让LLMs遵循人类指令的目标之间的差距。在这个任务中我们会使用模型在数据集上进行指令微调任务,同时使用SwanLab进行监控和可视化。

2024-06-20 12:24:21 5264 6

原创 技巧|手机上看SwanLab实验的两种方法

用手机看SwanLab实验的两种方法,帮助你随时随地查看实验进展。

2024-06-18 17:00:43 431

原创 Stable Diffusion文生图模型训练入门实战(完整代码)

(SD1.5)是由Stability AI在2022年8月22日开源的文生图模型,是SD最经典也是社区最活跃的模型之一。以SD1.5作为预训练模型,在火影忍者数据集上微调一个火影风格的文生图模型(非Lora方式),是学习的入门任务。显存要求 22GB左右在本文中,我们会使用模型在数据集上做训练,同时使用监控训练过程、评估模型效果。

2024-06-17 19:57:57 12376 24

原创 Stable-Baseline3 x SwanLab:可视化强化学习训练

Stable Baselines3 (SB3) 是一个强化学习的开源库,基于 PyTorch 框架构建。它是 Stable Baselines 项目的继任者,旨在提供一组可靠且经过良好测试的RL算法实现,便于研究和应用。StableBaseline3主要被应用于机器人控制、游戏AI、自动驾驶、金融交易等领域。你可以使用sb3快速进行模型训练,同时使用SwanLab进行实验跟踪与可视化。

2024-06-14 20:14:51 793

原创 Sentence Transformers x SwanLab:可视化Embedding训练

Sentence Transformers(又名SBERT)是访问、使用和训练文本和图像嵌入(Embedding)模型的Python库。你可以使用Sentence Transformers快速进行模型训练,同时使用SwanLab进行实验跟踪与可视化。

2024-06-14 20:13:29 370

原创 SwanLab系列教程:用swanlab.Text记录文本

本教程主要介绍如何用swanlab.Text记录文本,这在做NLP训练的时候特别好用。SwanLab是一个由国内团队开源的机器学习实验跟踪工具,相比于Tensorboard有更丰富的功能、更友好的UI界面,以及更重要的云端同步、多人协作功能。

2024-06-12 16:12:18 409

原创 SwanLab入门大模型:GLM4指令微调实战

大模型指令微调(Instruction Tuning)是一种针对大型预训练语言模型的微调技术,其核心目的是增强模型理解和执行特定指令的能力,使模型能够根据用户提供的自然语言指令准确、恰当地生成相应的输出或执行相关任务。指令微调特别关注于提升模型在遵循指令方面的一致性和准确性,从而拓宽模型在各种应用场景中的泛化能力和实用性。在实际应用中,我的理解是,指令微调更多把LLM看作一个更智能、更强大的传统NLP模型(比如Bert),来实现更高精度的文本预测任务。

2024-06-10 20:52:20 1395

原创 GLM4指令微调实战(完整代码)

GLM4指令微调实战,学习LLM微调的入门级任务,附带完整代码。

2024-06-10 20:34:00 5758 5

原创 SwanLab入门深度学习:Qwen2大模型指令微调

是通义千问团队的开源大语言模型,由阿里云通义实验室研发。以Qwen2作为基座大模型,通过指令微调的方式实现高准确率的文本分类,是学习的入门任务。指令微调是一种通过在由(指令,输出)对组成的数据集上进一步训练LLMs的过程。其中,指令代表模型的人类指令,输出代表遵循指令的期望输出。这个过程有助于弥合LLMs的下一个词预测目标与用户让LLMs遵循人类指令的目标之间的差距。在这个任务中我们会使用模型在数据集上进行指令微调任务,同时使用SwanLab进行监控和可视化。本教程参考了。

2024-06-09 18:41:25 1280

原创 Qwen2大模型微调入门实战(完整代码)

是通义千问团队的开源大语言模型,由阿里云通义实验室研发。以Qwen2作为基座大模型,通过指令微调的方式实现高准确率的文本分类,是学习的入门任务。指令微调是一种通过在由(指令,输出)对组成的数据集上进一步训练LLMs的过程。其中,指令代表模型的人类指令,输出代表遵循指令的期望输出。这个过程有助于弥合LLMs的下一个词预测目标与用户让LLMs遵循人类指令的目标之间的差距。在这个任务中我们会使用模型在数据集上进行指令微调任务,同时使用SwanLab进行监控和可视化。本教程参考了。

2024-06-09 18:23:18 22737 14

原创 PyTorch LSTM谷歌股价预测(完整代码与训练过程)

基于LSTM模型的股票预测任务,是领域的经典任务之一。这篇文章我将带大家使用这四个开源工具,完成从Google股票数据集的准备、代码编写、可视化训练与预测的全过程。

2024-06-06 23:38:30 10561 16

原创 基于Bert模型的美团外卖评论文本情感分类(附完整代码与训练过程)

基于Bert模型的美团外卖评论数据集的文本情感分类,是自然语言处理领域的经典案例之一。这篇文章我将带大家使用 SwanLab、Transformers、datasets 三个开源工具,完成从数据集准备、代码编写、可视化训练的全过程。观察了一下,中文互联网上似乎很少有能直接跑起来的Bert训练代码和教程,所以也希望这篇文章可以帮到大家。

2024-06-03 23:10:11 2531

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除