自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(46)
  • 收藏
  • 关注

原创 如何从Wandb迁移到SwanLab

SwanLab 是一个开源的模型训练记录工具,面向AI研究者,提供了训练可视化、自动日志记录、超参数记录、实验对比、多人协同等功能。在SwanLab上,研究者能基于直观的可视化图表发现训练问题,对比多个实验找到研究灵感,并通过在线链接的分享与基于组织的多人协同训练,打破团队沟通的壁垒。为什么要记录训练相较于软件开发,模型训练更像一个实验科学。一个品质优秀的模型背后,往往是成千上万次实验。研究者需要不断尝试、记录、对比,积累经验,才能找到最佳的模型结构、超参数与数据配比。

2024-10-27 16:28:42 253

原创 将Tensorboard日志转换为SwanLab项目

SwanLab 是一个开源的模型训练记录工具,面向AI研究者,提供了训练可视化、自动日志记录、超参数记录、实验对比、多人协同等功能。在SwanLab上,研究者能基于直观的可视化图表发现训练问题,对比多个实验找到研究灵感,并通过在线链接的分享与基于组织的多人协同训练,打破团队沟通的壁垒。为什么要记录训练相较于软件开发,模型训练更像一个实验科学。一个品质优秀的模型背后,往往是成千上万次实验。研究者需要不断尝试、记录、对比,积累经验,才能找到最佳的模型结构、超参数与数据配比。

2024-10-27 16:24:24 881

原创 SwanLab VSCode插件已发布,附使用教程

SwanLab 提供了友好的 API 和漂亮的界面,结合了超参数跟踪、指标记录、在线协作、实验链接分享等功能,让您可以快速跟踪 AI 实验、可视化过程、记录超参数,并分享给伙伴。SwanLab 是一款开源、轻量的 AI 实验跟踪工具,提供了一个跟踪、比较、和协作实验的平台。在VSCode中使用。

2024-10-19 15:00:22 205

原创 GLM4大模型微调入门实战-命名实体识别(NER)任务

基于GLM4-7B大模型,实现命名实体识别(NER)任务,是学习LLM微调非常好的入门任务之一,本文将提供完整的代码、模型、数据以及SwanLab实验过程,来帮助你学习如何进行微调。

2024-06-21 17:18:48 3066 7

原创 Qwen2大模型微调入门实战-命名实体识别(NER)任务(完整代码)

基于Qwen2-1.5B大模型,实现命名实体识别(NER)任务,是学习LLM微调非常好的入门任务之一,本文将提供完整的代码、模型、数据以及SwanLab实验过程,来帮助你学习如何进行微调。

2024-06-20 14:29:05 2718 1

原创 最实战的GLM4微调入门:从文本分类开始

大模型指令微调(Instruction Tuning)是一种针对大型预训练语言模型的微调技术,其核心目的是增强模型理解和执行特定指令的能力,使模型能够根据用户提供的自然语言指令准确、恰当地生成相应的输出或执行相关任务。指令微调特别关注于提升模型在遵循指令方面的一致性和准确性,从而拓宽模型在各种应用场景中的泛化能力和实用性。在实际应用中,我的理解是,指令微调更多把LLM看作一个更智能、更强大的传统NLP模型(比如Bert),来实现更高精度的文本预测任务。

2024-06-20 12:32:01 1791 1

原创 最实战的Qwen2微调入门:从文本分类开始

以Qwen2作为基座大模型,通过指令微调的方式实现高准确率的文本分类,是学习的入门任务。指令微调是一种通过在由(指令,输出)对组成的数据集上进一步训练LLMs的过程。其中,指令代表模型的人类指令,输出代表遵循指令的期望输出。这个过程有助于弥合LLMs的下一个词预测目标与用户让LLMs遵循人类指令的目标之间的差距。在这个任务中我们会使用模型在数据集上进行指令微调任务,同时使用SwanLab进行监控和可视化。

2024-06-20 12:24:21 3774 1

原创 技巧|手机上看SwanLab实验的两种方法

用手机看SwanLab实验的两种方法,帮助你随时随地查看实验进展。

2024-06-18 17:00:43 356

原创 Stable Diffusion文生图模型训练入门实战(完整代码)

(SD1.5)是由Stability AI在2022年8月22日开源的文生图模型,是SD最经典也是社区最活跃的模型之一。以SD1.5作为预训练模型,在火影忍者数据集上微调一个火影风格的文生图模型(非Lora方式),是学习的入门任务。显存要求 22GB左右在本文中,我们会使用模型在数据集上做训练,同时使用监控训练过程、评估模型效果。

2024-06-17 19:57:57 7460 19

原创 Stable-Baseline3 x SwanLab:可视化强化学习训练

Stable Baselines3 (SB3) 是一个强化学习的开源库,基于 PyTorch 框架构建。它是 Stable Baselines 项目的继任者,旨在提供一组可靠且经过良好测试的RL算法实现,便于研究和应用。StableBaseline3主要被应用于机器人控制、游戏AI、自动驾驶、金融交易等领域。你可以使用sb3快速进行模型训练,同时使用SwanLab进行实验跟踪与可视化。

2024-06-14 20:14:51 663

原创 Sentence Transformers x SwanLab:可视化Embedding训练

Sentence Transformers(又名SBERT)是访问、使用和训练文本和图像嵌入(Embedding)模型的Python库。你可以使用Sentence Transformers快速进行模型训练,同时使用SwanLab进行实验跟踪与可视化。

2024-06-14 20:13:29 303

原创 SwanLab系列教程:用swanlab.Text记录文本

本教程主要介绍如何用swanlab.Text记录文本,这在做NLP训练的时候特别好用。SwanLab是一个由国内团队开源的机器学习实验跟踪工具,相比于Tensorboard有更丰富的功能、更友好的UI界面,以及更重要的云端同步、多人协作功能。

2024-06-12 16:12:18 339

原创 SwanLab入门大模型:GLM4指令微调实战

大模型指令微调(Instruction Tuning)是一种针对大型预训练语言模型的微调技术,其核心目的是增强模型理解和执行特定指令的能力,使模型能够根据用户提供的自然语言指令准确、恰当地生成相应的输出或执行相关任务。指令微调特别关注于提升模型在遵循指令方面的一致性和准确性,从而拓宽模型在各种应用场景中的泛化能力和实用性。在实际应用中,我的理解是,指令微调更多把LLM看作一个更智能、更强大的传统NLP模型(比如Bert),来实现更高精度的文本预测任务。

2024-06-10 20:52:20 1267

原创 GLM4指令微调实战(完整代码)

GLM4指令微调实战,学习LLM微调的入门级任务,附带完整代码。

2024-06-10 20:34:00 4668 4

原创 SwanLab入门深度学习:Qwen2大模型指令微调

是通义千问团队的开源大语言模型,由阿里云通义实验室研发。以Qwen2作为基座大模型,通过指令微调的方式实现高准确率的文本分类,是学习的入门任务。指令微调是一种通过在由(指令,输出)对组成的数据集上进一步训练LLMs的过程。其中,指令代表模型的人类指令,输出代表遵循指令的期望输出。这个过程有助于弥合LLMs的下一个词预测目标与用户让LLMs遵循人类指令的目标之间的差距。在这个任务中我们会使用模型在数据集上进行指令微调任务,同时使用SwanLab进行监控和可视化。本教程参考了。

2024-06-09 18:41:25 1137

原创 Qwen2大模型微调入门实战(完整代码)

是通义千问团队的开源大语言模型,由阿里云通义实验室研发。以Qwen2作为基座大模型,通过指令微调的方式实现高准确率的文本分类,是学习的入门任务。指令微调是一种通过在由(指令,输出)对组成的数据集上进一步训练LLMs的过程。其中,指令代表模型的人类指令,输出代表遵循指令的期望输出。这个过程有助于弥合LLMs的下一个词预测目标与用户让LLMs遵循人类指令的目标之间的差距。在这个任务中我们会使用模型在数据集上进行指令微调任务,同时使用SwanLab进行监控和可视化。本教程参考了。

2024-06-09 18:23:18 16467 7

原创 PyTorch LSTM谷歌股价预测(完整代码与训练过程)

基于LSTM模型的股票预测任务,是领域的经典任务之一。这篇文章我将带大家使用这四个开源工具,完成从Google股票数据集的准备、代码编写、可视化训练与预测的全过程。

2024-06-06 23:38:30 5489 10

原创 基于Bert模型的美团外卖评论文本情感分类(附完整代码与训练过程)

基于Bert模型的美团外卖评论数据集的文本情感分类,是自然语言处理领域的经典案例之一。这篇文章我将带大家使用 SwanLab、Transformers、datasets 三个开源工具,完成从数据集准备、代码编写、可视化训练的全过程。观察了一下,中文互联网上似乎很少有能直接跑起来的Bert训练代码和教程,所以也希望这篇文章可以帮到大家。

2024-06-03 23:10:11 1832

原创 PyTorch MNIST手写体识别:SwanLab可视化训练

MNIST手写体识别任务是一个经典的计算机视觉问题,属于图像分类任务,目标是输入一个手写数字图像,AI模型可以正确预测数字是多少。MNIST数据集包含70,000个手写数字图像,每个图像大小为28x28像素。这些图像分为两部分:60,000个训练集和10,000个测试集。# 1. 循环调用train_dataloader,每次取出1个batch_size的图像和标签# 2. 传入到resnet18模型中得到预测结果# 3. 将结果和标签传入损失函数中计算交叉熵损失# 4. 根据损失计算反向传播。

2024-06-01 18:35:00 851

原创 Ultralytics x SwanLab:可视化YOLO模型训练

Ultralytics是YOLO官方团队推出的CV训练与推理框架,不仅支持目标检测任务,还支持分割、姿态识别、分类等更多任务。是一个深度学习实验管理与训练可视化工具,由西安电子科技大学团队打造,融合了Weights & Biases与Tensorboard的特点,能够方便地进行 训练可视化、多实验对比、超参数记录、大型实验管理和团队协作,并支持用网页链接的方式分享你的实验。你可以使用Ultralytics快速进行目标检测模型训练,同时使用SwanLab进行实验跟踪与可视化。可视化结果(可以在直接预览。

2024-06-01 17:51:45 758 2

原创 SwanLab入门深度学习:YOLOv8自定义数据集检测

基于YOLO模型在自定义数据上做训练,实现对特定目标的**识别和检测**,是CV领域非常经典的任务,也是AI项目落地最热门的方向之一。这篇文章我将带大家使用Ultralytics、SwanLab、Gradio这两个开源工具,完成从数据集准备、代码编写、可视化训练到推理Demo的全过程。

2024-05-29 20:38:00 1077

原创 SwanLab载入omegaconf配置教程

OmegaConf 与swanlab的集成非常简单,直接将omegaconf对象传递给swanlab.config,即可记录为超参数,

2024-05-29 20:36:17 329

原创 Transformers x SwanLab:可视化NLP模型训练

HuggingFace 的 Transformers 是目前最流行的深度学习训框架之一(100k+ Star),现在主流的大语言模型(LLaMa系列、Qwen系列、ChatGLM系列等)、自然语言处理模型(Bert系列)等,都在使用Transformers来进行预训练、微调和推理。

2024-05-28 20:08:26 1227

原创 YOLOv8猫狗检测:从SwanLab可视化训练到Gradio Demo网站

基于YOLO模型在自定义数据上做训练,实现对特定目标的识别和检测,是CV领域非常经典的任务,也是AI项目落地最热门的方向之一。这篇文章我将带大家使用Ultralytics、SwanLab、Gradio这两个开源工具,完成从数据集准备、代码编写、可视化训练到推理Demo的全过程。

2024-05-28 18:15:08 1499

原创 Transformers集成SwanLab实现AI训练可视化监控

你可以使用Transformers快速进行模型训练,同时使用SwanLab进行实验跟踪与可视化。HuggingFace Transformers的是一个非常流行的开源库,它提供了大量预训练的模型,主要用于自然语言处理(NLP)任务。这个库的目标是使最新的模型能够易于使用,并支持多种框架,如 TensorFlow 和 PyTorch。

2024-05-27 21:56:16 749

原创 BERT-IMDB电影评论情感分类实战(完整代码、数据集、实验过程)

基于BERT模型的IMDB电影评论情感分类,是NLP经典的Hello World任务之一。这篇文章我将带大家使用SwanLab、transformers、datasets三个开源工具,完成从数据集准备、代码编写、可视化训练的全过程。观察了一下,中文互联网上似乎很少有能直接跑起来的BERT训练代码和教程,所以也希望这篇文章可以帮到大家。

2024-05-27 14:46:23 4576 3

原创 PyTorchLightning集成SwanLab进行训练监控与可视化

你可以使用PyTorch Lightning快速进行模型训练,同时使用进行实验跟踪与可视化。PyTorch Lightning是一个开源的机器学习库,它建立在 PyTorch 之上,旨在帮助研究人员和开发者更加方便地进行深度学习模型的研发。Lightning 的设计理念是将模型训练中的繁琐代码(如设备管理、分布式训练等)与研究代码(模型架构、数据处理等)分离,从而使研究人员可以专注于研究本身,而不是底层的工程细节。

2024-05-24 15:14:00 446

原创 YOLOv8(Ultralytics)集成SwanLab进行训练监控和可视化

你可以使用Ultralytics快速进行计算机视觉模型训练,同时使用SwanLab进行实验跟踪与可视化。Ultralytics YOLOv8 是一款尖端、最先进的 (SOTA) 模型,它建立在以前 YOLO 版本的成功基础上,并引入了新功能和改进,以进一步提高性能和灵活性。YOLOv8 设计为快速、准确且易于使用,使其成为各种对象检测和跟踪、实例分割、图像分类和姿态估计任务的绝佳选择。的作用是为Ultralytics模型添加回调函数,以在模型训练的各个生命周期执行SwanLab记录。

2024-05-24 15:10:04 425 1

原创 SwanLab入门深度学习:BERT IMDB文本情感分类

基于BERT模型的IMDB电影评论情感分类,是NLP经典的Hello World任务之一。这篇文章我将带大家使用SwanLab、transformers、datasets三个开源工具,完成从数据集准备、代码编写、可视化训练的全过程。观察了一下,中文互联网上似乎很少有能直接跑起来的BERT训练代码和教程,所以也希望这篇文章可以帮到大家。

2024-05-23 16:44:31 1218 1

原创 SwanLab入门深度学习:PyTorch MNIST手写体识别

SwanLab - MNIST手写体识别任务是一个经典的计算机视觉问题,SwanLab入门深度学习、PyTorch MNIST手写体识别、MNIST数据集、PyTorch教程、手写数字识别、深度学习入门、机器学习训练、可视化深度学习、PyTorch实例、神经网络模型、Python深度学习、机器学习项目、SwanLab教程、手写体识别算法、PyTorch基础

2024-05-18 16:53:29 675

原创 SwanLab快速上手(Wandb国产平替)

SwanLab是一款开源、轻量级的AI实验跟踪工具,提供了一个跟踪、比较、和协作实验的平台,旨在加速AI研发团队100倍的研发效率。其提供了友好的API和漂亮的界面,结合了超参数跟踪、指标记录、在线协作、实验链接分享、实时消息通知等功能,让您可以快速跟踪ML实验、可视化过程、分享给同伴。相比于Tensorboard,SwanLab记录的信息更全、使用更方便。相比于Wandb,则访问速度更快,更方便于在国内使用,与主创团队交流更容易。

2024-05-07 17:56:42 1634

原创 SwanLab系列教程:用swanlab.Audio记录音频

SwanLab是一个由国内团队开源的机器学习实验跟踪工具,相比于Tensorboard有更丰富的功能、更友好的UI界面,本教程主要介绍如何用swanlab.Audio记录音频数据。

2024-04-15 21:38:59 174 1

原创 SwanLab系列教程:用swanlab.Image记录图像

SwanLab是一个由国内团队开源的机器学习实验跟踪工具,本教程主要介绍如何用记录图像。

2024-04-15 21:34:00 564 1

原创 Linux如何设置定时任务

用cron轻松设置定时任务

2024-01-17 01:18:53 382

原创 如何远程访问SwanLab实验看板

SwanLab是一款轻量的开源机器学习训练可视化工具,在机器学习训练时,远程访问服务器的情况是十分常见的,本教程将介绍如何在远程访问SwanLab实验看板。

2024-01-10 08:43:10 1040

原创 优雅打印PyTorch模型的总参数量、每层名称、尺寸与精度

使用PyTorch进行深度学习训练时,经常需要打印模型结构,查看每一层的名称、尺寸、精度、参数量等等,并在最后计算总参数量。

2024-01-08 09:38:38 2047

原创 PyTorch+SwanLab+Gradio+猫狗分类:轻松从可视化训练到Demo网站

这篇文章我将带大家使用PyTorch、SwanLab、Gradio三个开源工具,完成从的全过程。猫狗分类是计算机视觉最基础的任务之一——如果说完成MNIST手写体识别是实现CV的“Hello World”,那猫狗分类就是旅程的下一站~。

2024-01-06 21:08:01 2607 5

原创 如何用Argparse初始化SwanLab

SwanLab 是一款面向研究人员的开源机器学习训练管理工具,类似Tensorboard或Wandb。Argparse是机器学习训练中非常常用的第三方库,它的主要作用是用来解析命令行参数。通过定义所需的参数,可以从程序外部向程序内部传递各种参数。这样,用户在启动训练模型时,可以灵活地调整模型的参数,如学习率、训练轮数、数据集路径等,从而使得模型训练更加灵活和方便。

2024-01-06 18:54:51 433 1

原创 如何拥有漂亮的Github Star History折线图

一个漂亮的 Star上涨趋势图,让你的 README更漂亮~

2023-12-31 16:24:04 1096

原创 如何自动生成当前项目的 pip环境列表(requirements.txt)?

开源必备:自动生成当前项目的pip环境列表/requirements.txt

2023-12-31 16:03:39 545

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除