SwanLab私有化部署教程!

在这里插入图片描述

SwanLab私有化部署版面向所有个人用户免费开放,部署方案基于Docker Compose,能非常轻松地部署在 Windows/MacOS/Linux 机器上,希望能成为各位训练师的独门炼丹利器。

下面我们会介绍一下如何安装私有化部署版。

1. SwanLab介绍

SwanLab 是一个开源、现代化设计的深度学习训练跟踪与可视化工具,常被称为"中国版 Weights & Biases + Tensorboard"。目前SwanLab在Github上已收获 1k+ Star,也借此感谢各位小伙伴的支持。

在这里插入图片描述

SwanLab同时支持云端和离线使用,并适配了从PyTorch、Transformers、Lightning再到LLaMA Factory、veRL等30多种主流AI训练框架,Python API设计也简洁易上手,能轻松嵌入你的训练代码。

在这里插入图片描述

面向人工智能研究者,SwanLab设计了友好的Python API 和漂亮的UI界面,并提供训练可视化、自动日志记录、超参数记录、实验版本管理与对比、多人协同等功能。在SwanLab上,研究者能基于直观的可视化图表发现训练问题,对比多个实验找到研究灵感,并通过在线网页的分享与基于组织的多人协同训练,打破团队沟通的壁垒,提高组织训练效率。

在这里插入图片描述

SwanLab支持移动端使用,让你在手机上也能实时看到训练进展。同时,SwanLab也是目前唯一支持晟腾NPU等国产卡硬件监控的训练工具。

在这里插入图片描述

以下是SwanLab的一些核心特性:

  1. 📊 ​实验指标与超参数跟踪: 极简的代码嵌入您的机器学习 pipeline,跟踪记录训练关键指标

    • 支持云端使用(类似Weights & Biases),随时随地查看训练进展。
    • 支持超参数记录与表格展示
    • 支持的元数据类型:标量指标、图像、音频、文本、…
    • 支持的图表类型:折线图、媒体图(图像、音频、文本)、…
    • 后台自动记录:日志logging、硬件环境、Git 仓库、Python 环境、Python 库列表、项目运行目录
  2. ⚡️ ​全面的框架集成: PyTorch、 🤗HuggingFace Transformers、⚡️PyTorch Lightning、 🦙LLaMA Factory、MS-Swift、MMDetection、Ultralytics、PaddleDetetion、LightGBM、XGBoost、Keras、Tensorboard、Weights&Biases、OpenAI、XTuner、Stable Baseline3、Hydra 在内的 30+ 框架

  3. 💻 ​硬件监控: 支持实时记录与监控CPU、NPU(昇腾Ascend)、GPU(英伟达Nvidia)、内存的系统级硬件指标

  4. 📦 ​实验管理: 通过专为训练场景设计的集中式仪表板,通过整体视图速览全局,快速管理多个项目与实验

  5. 🆚 ​比较结果: 通过在线表格与对比图表比较不同实验的超参数和结果,挖掘迭代灵感

  6. 👥 ​在线协作: 您可以与团队进行协作式训练,支持将实验实时同步在一个项目下,您可以在线查看团队的训练记录,基于结果发表看法与建议

  7. ✉️ ​分享结果: 复制和发送持久的 URL 来共享每个实验,方便地发送给伙伴,或嵌入到在线笔记中。同时支持邮件、飞书、企业微信、钉钉等消息通知。

  8. 💻 ​支持自托管: 支持离线环境使用,自托管的社区版同样可以查看仪表盘与管理实验

2. 私有化部署流程

3. 安装先决条件

在安装 SwanLab 之前,请确保您的机器满足以下最低系统要求:

  • CPU >= 2核
  • 内存 >= 4GB
  • 存储空间 >= 20GB

SwanLab 私有化部署版,需要使用 Docker Compose 进行安装与部署,请根据你的操作系统,对表下面的表格选择正确的Docker及compose版本。

在这里插入图片描述

如果你已经安装了Docker,请跳过这一步。

4. 开始安装

1. 克隆仓库

使用Git克隆 self-hosted 仓库:

git clone https://github.com/SwanHubX/self-hosted.git
cd self-hosted

2. 一键脚本安装

如果你是Windows系统,请开启WSL2进行安装

默认的安装脚本在 docker/install.sh ,直接执行即可一键安装所有需要的容器以及执行初始化配置。

cd ./docker
./install.sh

默认脚本链接的镜像源在中国,所以中国地区的下载速度非常快!

如果你需要使用 DockerHub 作为镜像源,则可以使用下面的脚本进行安装:

./install-dockerhub.sh

5. 激活主账号

SwanLab社区版默认会使用8000端口,如果你使用的是默认配置,那么可以直接访问: http://localhost:8000 ,就可以访问到SwanLab社区版。

也有可能社区版部署在了其他端口,请打开 Docker Desktop,找到traefik容器旁边的port映射,比如64703:80,那么你应该访问http://localhost:64703。

在这里插入图片描述

现在,你需要激活你的主账号。激活需要1个License,个人使用可以免费在SwanLab官网申请一个,位置在 「设置」-「账户与许可证」。

在这里插入图片描述

拿到License后,回到激活页面,填写用户名、密码、确认密码和License,点击激活即可完成创建。

在这里插入图片描述

6. 开始你的第一个实验

在Python SDK完成登录:

swanlab login --host <IP地址>

如果你之前登录过swanlab,想要重新登录,请使用:

swanlab login --host <IP地址> --relogin

按回车,填写API Key,完成登录。之后你的SwanLab实验将会默认传到私有化部署的SwanLab上。

测试脚本:

import swanlab
import random

# 创建一个SwanLab项目
swanlab.init(
    # 设置项目名
    project="my-awesome-project",
    
    # 设置超参数
    config={
        "learning_rate": 0.02,
        "architecture": "CNN",
        "dataset": "CIFAR-100",
        "epochs": 10
    }
)

# 模拟一次训练
epochs = 10
offset = random.random() / 5
for epoch in range(2, epochs):
  acc = 1 - 2 ** -epoch - random.random() / epoch - offset
  loss = 2 ** -epoch + random.random() / epoch + offset

  # 记录训练指标
  swanlab.log({"acc": acc, "loss": loss})

# [可选] 完成训练,这在notebook环境中是必要的
swanlab.finish()

运行后在网页查看实验:

在这里插入图片描述

至此,你就完成了私有化部署的全流程!

### DeepSeek 满血版私有化部署教程 #### 选择合适版本 DeepSeek 提供多个版本的模型,包括但不限于1.5b、7b、8b、14b、32b 和 70b。这些不同的参数量决定了模型的能力以及所需的计算资源。对于希望实现满血版即最高性能版本的用户来说,建议优先考虑拥有较高参数量的模型如70b,但这同时也意味着更高的硬件需求[^2]。 #### 准备环境 为了成功完成 DeepSeek 的本地部署,在 Windows 或 Mac 上都需要先安装 Ollama 软件包。可以通过访问 Ollama 官网获取最新的安装指南并按照指示操作来设置开发环境[^1]。 #### 获取模型文件 除了通过官方提供的 ollama run 命令在线拉取所需版本外,还可以利用 Git LFS 工具直接从 Hugging Face 平台克隆特定大小的预训练权重文件到本地机器上。例如针对 deepseek-llm-7b 版本的操作如下所示: ```bash git lfs install git clone https://huggingface.co/deepseek-ai/deepseek-llm-7b ``` 此方法适用于那些网络条件不佳或者想要提前准备好离线使用的场景下[^4]。 #### 执行部署命令 当一切准备就绪之后,打开终端窗口(Windows 用户可使用 CMD),输入相应的启动指令即可触发自动化的安装流程。以加载 deepseek-r1:70b 这样的大型模型为例,执行下面这条语句将会开始整个过程: ```shell ollama run deepseek-r1:70b ``` 请注意,由于该类高规格型号对 GPU 性能有着严格的要求,因此在此之前务必确认自己的设备满足最低限度的支持标准。 #### 解决服务器繁忙问题 考虑到近期以来许多使用者反馈遇到了“服务器繁忙”的提示信息,这主要是因为公共云服务端口负载过高所致。为此推荐采取私有化的方式来进行独立部署,从而有效避开此类干扰因素的影响,确保获得稳定流畅的服务体验[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值