PCA的数学原理(经典)

PCA(Principal Component Analysis)是一种常用的数据分析方法。PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维。网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理。这篇文章的目的是介绍PCA的基本数学原理,帮助读者了解PCA的工作机制是什么。

当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述PCA的数学原理,所以整个文章不会引入严格的数学推导。希望读者在看完这篇文章后能更好的明白PCA的工作原理。

数据的向量表示及降维问题

一般情况下,在数据挖掘和机器学习中,数据被表示为向量。例如某个淘宝店2012年全年的流量及交易情况可以看成一组记录的集合,其中每一天的数据是一条记录,格式如下:

(日期, 浏览量, 访客数, 下单数, 成交数, 成交金额)

其中“日期”是一个记录标志而非度量值,而数据挖掘关心的大多是度量值,因此如果我们忽略日期这个字段后,我们得到一组记录,每条记录可以被表示为一个五维向量,其中一条看起来大约是这个样子:

(500,240,25,13,2312.15)?(500,240,25,13,2312.15)T
。则在二维平面上A和B可以用两条发自原点的有向线段表示,见下图:

好,现在我们从A点向B所在直线引一条垂线。我们知道垂线与B的交点叫做A在B上的投影,再设A与B的夹角是a,则投影的矢量长度为|A|cos(a)|A|cos(a)

也就是说,设向量B的模为1,则A与B的内积值等于A向B所在直线投影的矢量长度!这就是内积的一种几何解释,也是我们得到的第一个重要结论。在后面的推导中,将反复使用这个结论。

下面我们继续在二维空间内讨论向量。上文说过,一个二维向量可以对应二维笛卡尔直角坐标系中从原点出发的一个有向线段。例如下面这个向量:

在代数表示方面,我们经常用线段终点的点坐标表示向量,例如上面的向量可以表示为(3,2),这是我们再熟悉不过的向量表示。

不过我们常常忽略,只有一个(3,2)本身是不能够精确表示一个向量的。我们仔细看一下,这里的3实际表示的是向量在x轴上的投影值是3,在y轴上的投影值是2。也就是说我们其实隐式引入了一个定义:以x轴和y轴上正方向长度为1的向量为标准。那么一个向量(3,2)实际是说在x轴投影为3而y轴的投影为2。注意投影是一个矢量,所以可以为负。

更正式的说,向量(x,y)实际上表示线性组合:

x(1,0)?+y(0,1)?x(1,0)T+y(0,1)T

不难证明所有二维向量都可以表示为这样的线性组合。此处(1,0)和(0,1)叫做二维空间中的一组基。

所以,要准确描述向量,首先要确定一组基,然后给出在基所在的各个直线上的投影值,就可以了。只不过我们经常省略第一步,而默认以(1,0)和(0,1)为基。

我们之所以默认选择(1,0)和(0,1)为基,当然是比较方便,因为它们分别是x和y轴正方向上的单位向量,因此就使得二维平面上点坐标和向量一一对应,非常方便。但实际上任何两个线性无关的二维向量都可以成为一组基,所谓线性无关在二维平面内可以直观认为是两个不在一条直线上的向量。

例如,(1,1)和(-1,1)也可以成为一组基。一般来说,我们希望基的模是1,因为从内积的意义可以看到,如果基的模是1,那么就可以方便的用向量点乘基而直接获得其在新基上的坐标了!实际上,对应任何一个向量我们总可以找到其同方向上模为1的向量,只要让两个分量分别除以模就好了。例如,上面的基可以变为(12,12)(12,12)。下图给出了新的基以及(3,2)在新基上坐标值的示意图:

另外这里要注意的是,我们列举的例子中基是正交的(即内积为0,或直观说相互垂直),但可以成为一组基的唯一要求就是线性无关,非正交的基也是可以的。不过因为正交基有较好的性质,所以一般使用的基都是正交的。

基变换的矩阵表示

下面我们找一种简便的方式来表示基变换。还是拿上面的例子,想一下,将(3,2)变换为新基上的坐标,就是用(3,2)与第一个基做内积运算,作为第一个新的坐标分量,然后用(3,2)与第二个基做内积运算,作为第二个新坐标的分量。实际上,我们可以用矩阵相乘的形式简洁的表示这个变换:

(1/2‾√1/2‾√1/2‾√1/2‾√)(32)=(5/2‾√1/2‾√)(1/21/2−1/21/2)(32)=(5/2−1/2)

我们可以看下五条数据在平面直角坐标系内的样子:

现在问题来了:如果我们必须使用一维来表示这些数据,又希望尽量保留原始的信息,你要如何选择?

通过上一节对基变换的讨论我们知道,这个问题实际上是要在二维平面中选择一个方向,将所有数据都投影到这个方向所在直线上,用投影值表示原始记录。这是一个实际的二维降到一维的问题。

那么如何选择这个方向(或者说基)才能尽量保留最多的原始信息呢?一种直观的看法是:希望投影后的投影值尽可能分散。

以上图为例,可以看出如果向x轴投影,那么最左边的两个点会重叠在一起,中间的两个点也会重叠在一起,于是本身四个各不相同的二维点投影后只剩下两个不同的值了,这是一种严重的信息丢失,同理,如果向y轴投影最上面的两个点和分布在x轴上的两个点也会重叠。所以看来x和y轴都不是最好的投影选择。我们直观目测,如果向通过第一象限和第三象限的斜线投影,则五个点在投影后还是可以区分的。

下面,我们用数学方法表述这个问题。

方差

上文说到,我们希望投影后投影值尽可能分散,而这种分散程度,可以用数学上的方差来表述。此处,一个字段的方差可以看做是每个元素与字段均值的差的平方和的均值,即:

Var(a)=1mi=1m(aiμ)2Var(a)=1m∑i=1m(ai−μ)2
,则C是一个对称矩阵,其对角线分别个各个字段的方差,而第i行j列和j行i列元素相同,表示i和j两个字段的协方差。

协方差矩阵对角化

根据上述推导,我们发现要达到优化目前,等价于将协方差矩阵对角化:即除对角线外的其它元素化为0,并且在对角线上将元素按大小从上到下排列,这样我们就达到了优化目的。这样说可能还不是很明晰,我们进一步看下原矩阵与基变换后矩阵协方差矩阵的关系:

设原始数据矩阵X对应的协方差矩阵为C,而P是一组基按行组成的矩阵,设Y=PX,则Y为X对P做基变换后的数据。设Y的协方差矩阵为D,我们推导一下D与C的关系:

D=====1mYY?1m(PX)(PX)?1mPXX?P?P(1mXX?)

PCA(Principal Component Analysis,主成分分析)是一种基于线性代数的数据降维算法。其目的是通过将原始数据映射到新的坐标系上,使得数据在新的坐标系下的方差最大,从而找到数据的主要特征。下面是PCA数学原理推导: 假设有样本集 $X=\{ x_1,x_2,\cdots,x_n \}$,其中每个样本 $x_i \in \mathbb{R}^d$,现在我们希望将原始数据映射到一个新的坐标系上,使得数据在新的坐标系下的方差最大。设新的坐标系为 $\{ w_1,w_2,\cdots,w_d \}$,其中每个 $w_i$ 是一个长度为 $d$ 的向量。 首先,我们需要对原始数据进行中心化,即将每个样本减去均值,得到新的样本集 $X'=\{ x_1',x_2',\cdots,x_n' \}$,其中 $x_i' = x_i - \frac{1}{n}\sum_{j=1}^n x_j$。 接下来,我们需要找到一个向量 $w_1$,使得将样本 $X'$ 投影到 $w_1$ 上的方差最大。具体来说,对于每个样本 $x_i'$,它在 $w_1$ 上的投影为 $x_i' \cdot w_1$,则样本集 $X'$ 在 $w_1$ 方向上的方差为: $$ \begin{aligned} \mathrm{Var}(X'w_1) &= \frac{1}{n} \sum_{i=1}^n (x_i' \cdot w_1 - \bar{x}' \cdot w_1)^2 \\ &= \frac{1}{n} \sum_{i=1}^n [(x_i' - \bar{x}') \cdot w_1]^2 \\ &= \frac{1}{n} \sum_{i=1}^n (w_1^T(x_i' - \bar{x}'))^2 \\ &= \frac{1}{n} \sum_{i=1}^n w_1^T(x_i' - \bar{x}')(x_i' - \bar{x}')^Tw_1 \\ &= w_1^T\left(\frac{1}{n} \sum_{i=1}^n (x_i' - \bar{x}')(x_i' - \bar{x}')^T\right)w_1 \\ &= w_1^TSw_1 \end{aligned} $$ 其中,$\bar{x}'$ 是样本集 $X'$ 的均值向量,$S$ 是样本集 $X'$ 的协方差矩阵,$w_1$ 是一个单位向量。根据上述式子,我们可以看出,$w_1$ 的方向与样本集 $X'$ 的协方差矩阵 $S$ 的主特征向量相同,因为 $w_1$ 的方向确定后,$\mathrm{Var}(X'w_1)$ 就只与 $S$ 的特征值有关,而特征值最大的方向就是协方差矩阵 $S$ 的主特征向量。 因此,我们可以通过求解样本集 $X'$ 的协方差矩阵 $S$ 的特征值和特征向量,找到 $w_1$ 的方向。具体来说,设 $S$ 的特征值和特征向量分别为 $\lambda_1,\lambda_2,\cdots,\lambda_d$ 和 $v_1,v_2,\cdots,v_d$,则 $w_1$ 的方向为 $v_1$。 接着,我们需要找到下一个向量 $w_2$,使得它与 $w_1$ 垂直,并且将样本集 $X'$ 投影到 $w_1$ 和 $w_2$ 构成的平面上的方差最大。具体来说,对于每个样本 $x_i'$,它在 $w_1$ 和 $w_2$ 构成的平面上的投影为 $(x_i' \cdot w_1, x_i' \cdot w_2)$,则样本集 $X'$ 在 $w_1$ 和 $w_2$ 构成的平面上的方差为: $$ \begin{aligned} \mathrm{Var}(X'w_1w_2) &= \frac{1}{n} \sum_{i=1}^n (x_i' \cdot w_1 - \bar{x}' \cdot w_1)^2 + (x_i' \cdot w_2 - \bar{x}' \cdot w_2)^2 \\ &= \frac{1}{n} \sum_{i=1}^n [(x_i' - \bar{x}') \cdot w_1]^2 + [(x_i' - \bar{x}') \cdot w_2]^2 \\ &= \frac{1}{n} \sum_{i=1}^n (w_1^T(x_i' - \bar{x}'))^2 + (w_2^T(x_i' - \bar{x}'))^2 \\ &= w_1^T\left(\frac{1}{n} \sum_{i=1}^n (x_i' - \bar{x}')(x_i' - \bar{x}')^T\right)w_1 + w_2^T\left(\frac{1}{n} \sum_{i=1}^n (x_i' - \bar{x}')(x_i' - \bar{x}')^T\right)w_2 \\ &= w_1^TSw_1 + w_2^TSw_2 \end{aligned} $$ 由于 $w_1$ 已经确定,因此我们只需要找到一个与 $w_1$ 垂直的向量 $w_2$,使得 $\mathrm{Var}(X'w_1w_2)$ 最大。我们可以通过最大化 $w_2^TSw_2$ 来实现这一点。 具体来说,我们可以定义一个投影矩阵 $P = \begin{bmatrix} w_1 & w_2 \end{bmatrix}$,将样本集 $X'$ 投影到 $w_1$ 和 $w_2$ 构成的平面上,得到新的样本集 $Y = \{ y_1,y_2,\cdots,y_n \}$,其中 $y_i = P^Tx_i'$。则样本集 $Y$ 的协方差矩阵为 $S_Y = \frac{1}{n}YY^T$。我们需要找到一个单位向量 $w_2$,使得 $w_2^TS_Yw_2$ 最大。根据拉格朗日乘数法,可以得到: $$ S_Yw_2 = \lambda w_2 $$ 其中,$\lambda$ 是 $S_Y$ 的特征值。因此,$w_2$ 的方向与 $S_Y$ 的主特征向量相同。由于 $S_Y$ 是对称矩阵,$w_1$ 和 $w_2$ 的方向就是 $S_Y$ 的前两个主特征向量。以此类推,我们可以找到 $d$ 个主成分,从而将原始数据映射到 $d$ 维空间中。 总结一下,PCA 的步骤如下: 1. 对原始数据进行中心化,得到新的样本集 $X'$。 2. 求解样本集 $X'$ 的协方差矩阵 $S$ 的特征值和特征向量。 3. 选择前 $d$ 个特征向量,构成新的坐标系 $\{ w_1,w_2,\cdots,w_d \}$。 4. 将样本集 $X'$ 投影到新的坐标系上,得到新的样本集 $Y$。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值