创业公司下的质量体系建设《线下部分》
创业公司一般具备以下几种特点:
#建立一个质量保障体系前的一些问题
- 问题1:质量是什么?
质量(Quality),也称品质。表示产品所具备的特质或属性。
质量有优劣,也可以说有高有低。
人们往往将品质优的产品(或服务)视为“质量好”,将品质低劣的产品(或服务)视为“质量差”。
质量的定义是指符合要求。没有“好”的质量,只有符合要求的质量
-
问题2:创业公司质量体系的基调是什么?
快,低
a、求的支撑业务
快速
的测试能力
b、求的是大问题没有的低的
质量标准
c、求的是打基础
的质量核心不要想分分钟吃成一个胖子
不要想什么都要去做,什么都做。 -
问题3:谁为质量买单?
测试?开发?产品?
质量不是一个人的事
质量也不只是测试的事
质量是整个研发体系下所有人的事 -
问题4:测试的定位是什么?
保姆式? 引导式? 服务式?专家式?
-
问题5:质量保障体系核心是什么?
>组织?个人 OR 团队?环境? <br>研发流程?研发规范? <br>测试策略?效能服务? <br>质量数据?质量度量?
业务理解?业务传承?
质量保障闭环体系?
6、问题6:质量来自哪里?
测试有法、质量有度
有态度的人、 透析的需求、合理的设计,高质量的实现,完备的测试、合理的流程。
7、问题7:质量工作的过程?
>是什么人、
采用什么样的操作方法、
使用什么样的效能工具,
落下什么样的过程数据,
达到什么样的质量效果,
通过分析数据得到我们想要继续改进方向.
#质量保障的远期目标
目标: 多、快、稳
支持更多的业务、更快的速度、更稳定的质量
根据公司的发展、质量要求,实现质量保障目标的不同层次目标度。
前期的目标是实现从0到1的跨度。
1、研发职责清晰化 :开发的质量职责、测试的质量职责、PM等
2、流程规范标准化:合适的研发流程,可靠的规范标准、测试多维度指导开发保障质量。
3、质量保障体系化:一套可执行遵循的闭环质量体系
4、质量数据可视化:通过质量数据推动质量保障体系的运行与改进。
5、质量保障产品化:用产品的思维把研发效能&质量构建
6、质量效能自动化:把一切可自动化的自动化起来、持续起来。
7、业务沉淀持续化:把业务沉淀持续维护起来,传承起来。
8、测试工作服务化:从传统的保姆式测试,到引导式测试、到服务式测试。
##创业公司的质量目标
创业公司的质量目标:就是为了后继的质量体系的建设奠定一个基础。
####我们从以下几个方面出发:
1、团队:人、业务、环境
2、过程:研发流程、规范
3、方法:测试策略、测试效能服务
4、数据:质量数据、效能数据分析
5、运营:数据运营、质量改进
#研发质量团队建设
1、招人
招什么样的人?能力?态度?价值观?
2、团队建设
我们是个什么样的团队?各自为战?协作互助?积极负责?学习创新?
我们是团队、不是团伙。有共同的目标、共同的责任
。
3、团队能力
多维度提升团队的测试能力、业务能力、项目能力等。
4、业务传承
打造一个业务传承体系,加速业务理解与接收。
5、职责
清晰的明确每个人的职责范围,边界内容如何覆盖。
6、环境
构建一套稳定的线下研发环境
#研发过程控制
####研发流程
根据不同的业务、不同的类型制定不同的流水线。
1、标准项目发布流程
2、日常项目发布流程
3、故障修复流程
4、数据订正流程
5、其他特别的流程
####研发阶段任务清单
研发阶段规定需要完成的任务清单:文档、评审、模板
1、需求阶段
2、研发阶段
3、测试阶段
4、发布阶段
5、运维阶段
####研发节点标准
研发不同的阶段下的准入准出规范
1、评审通过
2、自测通过
3、文档完备
#效率服务
##测试策略
#####分层自动化
Service(HTTP/HSF/Dubbo/other协议)单元测试
UI自动化(web-ui,APP-ui)
#####全链路自动化测试
#####环境稳定性检测
参考测试策略#####流量录制回放
真实实现线上数据到测试数据的应用,满足真实场景的自动化
#####探索性测试
#####全链路性能测试
##效能工具
#####数据服务######数据工厂
可以服务:功能测试、自动化测试、开发同学.
######数据银行
####Mock系统
实现:前后端分离,系统隔离
目标:打破系统间的依赖、检测系统的服务能力
###小工具、大平台
为了测试的需求而提供的服务能力,有很多,不同的业务不同的需求。
#质量效率
##数据
#####1、研发质量
#####2、项目质量
#####3、测试质量
#####4、运维质量
#####5、线上质量
##效率
#####多类型下的战斗力需求、任务、缺陷等
#####多角度下的数据比对
横向对比,纵向对比,环比
#####多方位的数据量化
个人、团队、项目、应用、产品
#####多维度下的稳定性
线上、线下
#质量数据运营
把质量数据进行分析、提出改进方案,落地实施,推进质量保障体系的前进