数据结构--并查集(C++)

目录

1.合并集合

输入格式

输出格式

数据范围

输入样例:

输出样例:

代码展示

 2.连通块中点的数量

输入格式

输出格式

数据范围

输入样例:

输出样例:

 代码展示

3.食物链

输入格式

输出格式

数据范围

输入样例:

输出样例:

代码展示 

4.修复公路(2025“钉耙编程”中国大学生算法设计春季联赛3)

输入格式/数据范围

输出格式

输入样例:

输出样例:

代码展示 


1.合并集合

一共有 n 个数,编号是 1∼n,最开始每个数各自在一个集合中。

现在要进行 m 个操作,操作共有两种:

  1. M a b,将编号为 a 和 b 的两个数所在的集合合并,如果两个数已经在同一个集合中,则忽略这个操作;
  2. Q a b,询问编号为 a 和 b 的两个数是否在同一个集合中;
输入格式

第一行输入整数 n 和 m。

接下来 m 行,每行包含一个操作指令,指令为 M a b 或 Q a b 中的一种。

输出格式

对于每个询问指令 Q a b,都要输出一个结果,如果 a 和 b 在同一集合内,则输出 Yes,否则输出 No

每个结果占一行。

数据范围

1≤n,m≤10^5

输入样例:
4 5
M 1 2
M 3 4
Q 1 2
Q 1 3
Q 3 4
输出样例:
Yes
No
Yes
代码展示
#include<iostream>
using namespace std;
int p[100010];
int find(int x)
{
    if(x!=p[x])
    p[x]=find(p[x]);
    return p[x];
}
void merge(int a,int b)
{
    int x=find(a),y=find(b);
    if(x!=y)
    p[x]=y;
}
void query(int a,int b)
{
    int x=find(a),y=find(b);
    if(x==y)
    cout<<"Yes"<<endl;
    else
    cout<<"No"<<endl;
    return ;
}
int main()
{
    int n,m;
    cin>>n>>m;
    for(int i=1;i<=n;i++)
    p[i]=i;
    while(m--)
    {
        char op;
        cin>>op;
        int a,b;
        cin>>a>>b;
        if(op=='M')
        merge(a,b);
        else
        query(a,b);
    }
}

 2.连通块中点的数量

给定一个包含 n 个点(编号为 1∼n)的无向图,初始时图中没有边。

现在要进行 m 个操作,操作共有三种:

  1. C a b,在点 a 和点 b 之间连一条边,a 和 b 可能相等;
  2. Q1 a b,询问点 a 和点 b 是否在同一个连通块中,a 和 b 可能相等;
  3. Q2 a,询问点 a 所在连通块中点的数量;
输入格式

第一行输入整数 n 和 m。

接下来 m 行,每行包含一个操作指令,指令为 C a bQ1 a b 或 Q2 a 中的一种。

输出格式

对于每个询问指令 Q1 a b,如果 a 和 b 在同一个连通块中,则输出 Yes,否则输出 No

对于每个询问指令 Q2 a,输出一个整数表示点 a 所在连通块中点的数量

每个结果占一行。

数据范围

1≤n,m≤10^5

输入样例:
5 5
C 1 2
Q1 1 2
Q2 1
C 2 5
Q2 5
输出样例:
Yes
2
3
 代码展示
#include<iostream>
using namespace std;
int p[100010],s[100010];
int find(int x)
{
	if(x!=p[x])
	p[x]=find(p[x]);
	return p[x];
}
void merge(int a,int b)
{
	int x=find(a),y=find(b);
	if(x!=y)
	{
		p[x]=y;
		s[y]+=s[x];
	}
}
void query(int a,int b)
{
    int x=find(a),y=find(b);
	if(x==y)
	cout<<"Yes"<<endl;
	else
	cout<<"No"<<endl;
}
int main()
{
	int n,m;
	cin>>n>>m;
	for(int i=1;i<=n;i++)
	{
		p[i]=i;
		s[i]=1;
	}
	while(m--)
	{
		string op;
		cin>>op;
		int a,b;
		if(op=="C")
		{
			cin>>a>>b;
			merge(a,b);
		}
		else if(op=="Q1")
		{
			cin>>a>>b;
			query(a,b);
		}
		else
		{
			cin>>a;
			cout<<s[find(a)]<<endl;
		}
	}
}

3.食物链

动物王国中有三类动物 A,B,C这三类动物的食物链构成了有趣的环形。

A 吃 B,B 吃 C,C 吃 A。

现有 N 个动物,以 1∼N 编号。

每个动物都是 A,B,C 中的一种,但是我们并不知道它到底是哪一种。

有人用两种说法对这 N 个动物所构成的食物链关系进行描述:

第一种说法是 1 X Y,表示 X 和 Y 是同类。

第二种说法是 2 X Y,表示 X 吃 Y。

此人对 N 个动物,用上述两种说法,一句接一句地说出 K 句话,这 K 句话有的是真的,有的是假的。

当一句话满足下列三条之一时,这句话就是假话,否则就是真话。

  1. 当前的话与前面的某些真的话冲突,就是假话;
  2. 当前的话中 X 或 Y 比 N 大,就是假话;
  3. 当前的话表示 X 吃 X,就是假话。

你的任务是根据给定的 N 和 K 句话,输出假话的总数。

输入格式

第一行是两个整数 N 和 K,以一个空格分隔。

以下 K 行每行是三个正整数 D,X,Y两数之间用一个空格隔开,其中 D 表示说法的种类。

若 D=1,则表示 X 和 Y 是同类。

若 D=2,则表示 X 吃 Y。

输出格式

只有一个整数,表示假话的数目。

数据范围

1≤N≤50000
0≤K≤100000

输入样例:
100 7
1 101 1 
2 1 2
2 2 3 
2 3 3 
1 1 3 
2 3 1 
1 5 5
输出样例:
3
代码展示 
#include<iostream>
using namespace std;
int p[150050];
int find(int x)
{
	if(x!=p[x])
	p[x]=find(p[x]);
	return p[x];
}
// a是同类域,a+n是捕食域,a+n+n是天敌域 
int main()
{
	int n,k;
	cin>>n>>k;
	for(int i=1;i<=3*n;i++)
	p[i]=i;
	int ans=0;
	while(k--)
	{
		int t,a,b;
		cin>>t>>a>>b;
		if(a>n||b>n)
		{
			ans++;
			continue;
		}
		else if(t==1)
		{
			if(find(a)==find(b+n)||find(a)==find(b+n+n))
			{
			ans++;
			continue;
			}
			p[find(a)]=find(b);
			p[find(a+n)]=find(b+n);
			p[find(a+n+n)]=find(b+n+n);
		}
		else
		{
			if(find(a)==find(b)||find(a)==find(b+n))
			{
				ans++;
				continue;
			}
			p[find(a)]=find(b+n+n);
			p[find(a+n)]=find(b);
			p[find(a+n+n)]=find(b+n);	
		}
	}
	cout<<ans<<endl;
}

4.修复公路(2025“钉耙编程”中国大学生算法设计春季联赛3)

有 n 座城市,依次坐落在一条直线上,相邻城市之间的距离为 1,且相邻城市之间原本有一条公路。现在,一场百年难遇的地震导致所有公路都被破坏了。

然而,每座城市都有一台空间传送机,可以从第 i 座城市传送到距离为 ai​ 的另一座城市,或者从距离为 ai 的城市传送到第 i 座城市(即从城市 i 可以传送到城市 i+ai​ 或 i−ai​,或者反向传送,如果目标城市存在的话)。

现在,政府需要开展援助工作,希望能尽快实现从任意城市到任意城市的连通性。为此,政府决定修复部分公路。问至少修复多少长度的公路,才能满足上述要求?

输入格式/数据范围

第一行一个整数 T (1≤T≤1000),表示测试数据组数。

每组输入数据的第一行包含一个正整数 n (1≤n≤3×10^5),表示城市数量。

第二行包含 n 个整数 a1,a2,…,an(1≤ai≤n),表示每个城市的传送距离。

保证所有测试数据的 n 之和不超过 10^6。

输出格式

对于每组数据,输出一行一个整数表示需要最小需要修复公路的长度。

输入样例:

2

4

1 2 1 3

5

5 5 5 5 5

输出样例:

0

4

代码展示 
#include<bits/stdc++.h>
using namespace std;
int p[300030];
int num;
int find(int x)
{
	if(p[x]!=x)
	p[x]=find(p[x]);
	return p[x];
}
void merge(int a,int b)
{
		int pa=find(a),pb=find(b);
		if(pa!=pb)
		{
		p[pa]=pb;
		num++;
		}
}
int main()
{
	ios::sync_with_stdio(0);
	cin.tie(0),cout.tie(0);
	int t;
	cin>>t;
	while(t--)
	{
		int n;
		cin>>n;
		vector<int> a(n);
		for(int i=0;i<n;i++)
		{
			p[i]=i;
			cin>>a[i];
		}
		num=1;
		for(int i=0;i<n;i++)
		{
			if(i+a[i]<n)
			merge(i,i+a[i]);
			if(i-a[i]>=0)
		 	merge(i,i-a[i]);
		}
		cout<<n-num<<endl;
	}
}

水XD

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值