今日任务:
● 理论基础
● 232.用栈实现队列
● 225. 用队列实现栈
232.用栈实现队列
stack<int> stIn; //初始
stack<int> stOut; //辅助
功能:push:加入的一律到 stIn (套壳函数)
pop:在stOut进行
peek:利用pop,再push
empty:两个栈不同时空。
class MyQueue {
public:
stack<int> stIn; //初始
stack<int> stOut; //辅助
/** Initialize your data structure here. */
MyQueue() { //默认构造
}
/** Push element x to the back of queue. */
void push(int x) {
stIn.push(x);
}
/** Removes the element from in front of queue and returns that element. */
int pop() {
// 只有当stOut为空的时候,再从stIn里导入数据(导入stIn全部数据)
if (stOut.empty()) {
// 从stIn导入数据直到stIn为空
while(!stIn.empty()) {
stOut.push(stIn.top());
stIn.pop();
}
}
int result = stOut.top();
stOut.pop();
return result;
}
/** Get the front element. */
int peek() { //弹出去,再收回来 peek 利用pop
int res = this->pop(); // 直接使用已有的pop函数
stOut.push(res); // 因为pop函数弹出了元素res,所以再添加回去
return res;
}
/** Returns whether the queue is empty. */
bool empty() {
return stIn.empty() && stOut.empty();
}
};
- 时间复杂度: push和empty为O(1), pop和peek为O(n)
- 空间复杂度: O(n)
225. 用队列实现栈
一个队列实现了栈:每次加入元素:1.加入X
2.一直弹出,一直加入元素!
class MyStack {
public:
queue<int>q;
MyStack() {
}
void push(int x) {
int n = q.size();
q.push(x);
for (int i = 0; i < n; i++) { //先放入X 边弹出,边加入已有元素!
q.push(q.front());
q.pop();
}
}
int pop() {
int r = q.front(); //队列stl 与stack一致!
q.pop();
return r;
}
int top() {
int r = q.front();
return r;
}
bool empty() {
return q.empty();
}
};
/**
* Your MyStack object will be instantiated and called as such:
* MyStack* obj = new MyStack();
* obj->push(x);
* int param_2 = obj->pop();
* int param_3 = obj->top();
* bool param_4 = obj->empty();
*/