NG深度学习第一门课作业2 通过一个隐藏层的神经网络来做平面数据的分类

欢迎来到你的第三周编程作业。是时候建立你的第一个神经网络了,它将有一个隐藏的层。您将会看到这个模型和您使用逻辑回归实现的模型有很大的不同。

在这篇文章中,我们会讲到以下的知识:

  • 构建具有单隐藏层的二分类神经网络。
  • 使用具有非线性激活功能激活函数,例如tanh。
  • 计算交叉熵损失(损失函数)。
  • 实现向前和向后传播。

1-准备软件包

我们需要准备一些软件包:

numpy:是用Python进行科学计算的基本软件包。
sklearn:为数据挖掘和数据分析提供的简单高效的工具。
matplotlib :是一个用于在Python中绘制图表的库。
testCases:提供了一些测试示例来评估函数的正确性,参见下载的资料或者在底部查看它的代码。
planar_utils :提供了在这个任务中使用的各种有用的功能,参见下载的资料或者在底部查看它的代码。

# Package imports
import numpy as np
import matplotlib.pyplot as plt
from testCases import *
import sklearn
import sklearn.datasets
import sklearn.linear_model
from planar_utils import plot_decision_boundary, sigmoid, load_planar_dataset, load_extra_datasets
from functools import reduce
import operator

%matplotlib inline

np.random.seed(1) # 设置一个固定的随机种子,以保证接下来的步骤中我们的结果是一致的

 

2 -数据集

首先,我们来看看我们将要使用的数据集, 下面的代码会将一个花的图案的二类数据集加载到变量X和Y中。

X, Y = load_planar_dataset() 

 把数据集加载完成了,然后使用matplotlib可视化数据集,代码如下:

# Visualize the data:
plt.scatter(X[0, :], X[1, :], c=Y.reshape(-1,), s=40, cmap=plt.cm.Spectral);

结果:

数据看起来像一朵红色(y = 0)和一些蓝色(y = 1)的数据点的花朵的图案。 我们的目标是建立一个模型来适应这些数据。现在,我们已经有了以下的东西:

X:一个numpy的矩阵,包含了这些数据点的数值
Y:一个numpy的向量,对应着的是X的标签【0 | 1】(红色:0 , 蓝色 :1)

练习:你有多少个训练示例?此外,变量的维度是多少?

### START CODE HERE ### (≈ 3 lines of code)
shape_X = X.shape
shape_Y = Y.shape
m = X.shape[1]  # 训练集里面的数量
### END CODE HERE ###

print ('The shape of X is: ' + str(shape_X))
print ('The shape of Y is: ' + str(shape_Y))
print ('I have m = %d training examples!' % (m))

结果:

The shape of X is: (2, 400)
The shape of Y is: (1, 400)
I have m = 400 training examples!

 

3 -简单逻辑回归

在建立一个完整的神经网络之前,让我们先看看逻辑回归是如何处理这个问题的。您可以使用sklearn的内置函数来实现这一点。运行下面的代码,在数据集上训练逻辑回归分类器。

# Train the logistic regression classifier
clf = sklearn.linear_model.LogisticRegressionCV();
clf.fit(X.T, Y.T.reshape(-1,));

现在,您可以绘制这些模型的决策边界。运行下面的代码。

# 绘制决策边界
plot_decision_boundary(lambda x: clf.predict(x), X, Y.reshape(-1,))
plt.title("Logistic Regression")  #图标题

# Print accuracy
LR_predictions = clf.predict(X.T)  #预测结果
print ('Accuracy of logistic regression: %d ' % float((np.dot(Y,LR_predictions) + np.dot(1-Y,1-LR_predictions))/float(Y.size)*100) +
       '% ' + "(percentage of correctly labelled datapoints)")

结果:(逻辑回归的准确性: 47 % (正确标记的数据点所占的百分比))

Accuracy of logistic regression: 47 % (percentage of correctly labelled datapoints)

解释:准确性只有47%的原因是数据集不是线性可分的,所以逻辑回归表现不佳,现在我们正式开始构建神经网络。

 

4 -神经网络模型

逻辑回归在“花卉数据集”上效果不佳。你要训练一个只有一个隐藏层的神经网络。

构建神经网络的一般方法是: 
1. 定义神经网络结构(输入单元的数量,隐藏单元的数量等)。 
2. 初始化模型的参数 
3. 循环:

  • 实施前向传播
  • 计算损失
  • 实现反向传播
  • 更新参数(梯度下降)

最后我们要它们合并到一个nn_model() 函数中,当我们构建好了nn_model()并学习了正确的参数,我们就可以预测新的数据。
 

4.1 -定义神经网络结构

练习:定义三个变量:

  • n_x: 输入层的数量
  • n_h: 隐藏层的数量(这里设置为4)
  • n_y: 输出层的数量

提示:使用X和Y的维度来查找n_x和n_y。

# GRADED FUNCTION: layer_sizes

def layer_sizes(X, Y):
    """
    参数:
     X - 输入数据集,维度为(输入的数量,训练/测试的数量)
     Y - 标签,维度为(输出的数量,训练/测试数量)

    返回:
     n_x - 输入层的数量
     n_h - 隐藏层的数量
     n_y - 输出层的数量
    """
    ### START CODE HERE ### (≈ 3 lines of code)
    n_x = X.shape[0]   # 输入层
    n_h = 4            # 隐藏层,硬编码为4
    n_y = Y.shape[0]   # 输出层
    ### END CODE HERE ###
    return (n_x, n_h, n_y)

测试:

X_assess, Y_assess = layer_sizes_test_case()
(n_x, n_h, n_y) = layer_sizes(X_assess, Y_assess)
print("The size of the input layer is: n_x = " + str(n_x))
print("The size of the hidden layer is: n_h = " + str(n_h))
print("The size of the output layer is: n_y = " + str(n_y))

结果:(三个层的节点数量)

The size of the input layer is: n_x = 5
The size of the hidden layer is: n_h = 4
The size of the output layer is: n_y = 2

 

4.2 -初始化模型的参数

练习:实现函数initialize_parameters()。

说明: 确保您的参数大小正确。如果需要,请参考上面的神经网络图。

  • 您将使用随机值初始化权重矩阵:使用 np.random.randn(a,b)* 0.01 来随机初始化一个维度为(a,b)的矩阵。
  • 您将偏向量初始化为零: 使用    np.zeros((a,b)) 用零初始化矩阵(a,b)。
# GRADED FUNCTION: initialize_parameters

def initialize_parameters(n_x, n_h, n_y):
    """
    参数:
        n_x - 输入层节点的数量
        n_h - 隐藏层节点的数量
        n_y - 输出层节点的数量

    返回:
        parameters - 包含参数的字典:
            W1 - 权重矩阵,维度为(n_h,n_x)
            b1 - 偏置向量,维度为(n_h,1)
            W2 - 权重矩阵,维度为(n_y,n_h)
            b2 - 偏置向量,维度为(n_y,1)
    """
    
    np.random.seed(2) # 指定一个随机种子,以便你的输出与我们一样
    
    ### START CODE HERE ### (≈ 4 lines of code)
    W1 = np.random.randn(n_h,n_x) * 0.01
    b1 = np.zeros((n_h, 1))
    W2 = np.random.randn(n_y,n_h) * 0.01
    b2 = np.zeros((n_y, 1))
    ### END CODE HERE ###
    
    # 使用断言确保我的数据格式是正确的
    assert (W1.shape == (n_h, n_x))
    assert (b1.shape == (n_h, 1))
    assert (W2.shape == (n_y, n_h))
    assert (b2.shape == (n_y, 1))
    
    parameters = {"W1": W1,
                  "b1": b1,
                  "W2": W2,
                  "b2": b2}
    
    return parameters

测试:

n_x, n_h, n_y = initialize_parameters_test_case()

parameters = initialize_parameters(n_x, n_h, n_y)
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))

结果:

W1 = [[-0.00416758 -0.00056267]
 [-0.02136196  0.01640271]
 [-0.01793436 -0.00841747]
 [ 0.00502881 -0.01245288]]
b1 = [[ 0.]
 [ 0.]
 [ 0.]
 [ 0.]]
W2 = [[-0.01057952 -0.00909008  0.00551454  0.02292208]]
b2 = [[ 0.]]

 

4.3 -循环

练习:实现前向传播函数forward_propagation()

说明: 请看上面分类器的数学表示。 我们可以使用sigmoid()函数,也可以使用np.tanh()函数。 
步骤如下:

使用字典类型的parameters(它是initialize_parameters() 的输出)检索每个参数。
实现向前传播, 计算Z[1],A[1],Z[2]和 A[2]( 训练集里面所有例子的预测向量)。
反向传播所需的值存储在“cache”中,cache将作为反向传播函数的输入。

# GRADED FUNCTION: forward_propagation

def forward_propagation(X, parameters):
    """
    参数:
         X - 维度为(n_x,m)的输入数据。
         parameters - 初始化函数(initialize_parameters)的输出

    返回:
         A2 - 使用sigmoid()函数计算的第二次激活后的数值
         cache - 包含“Z1”,“A1”,“Z2”和“A2”的字典类型变量
    """
    # 从字典“参数”中检索每个参数
    ### START CODE HERE ### (≈ 4 lines of code)
    W1 = parameters["W1"]  # 根据对应的键值获取相应的参数
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    ### END CODE HERE ###
    
    # 前向传播计算A2
    ### START CODE HERE ### (≈ 4 lines of code)
    Z1 = np.dot(W1 , X) + b1
    A1 = np.tanh(Z1)
    Z2 = np.dot(W2 , A1) + b2
    A2 = sigmoid(Z2)
    ### END CODE HERE ###
    
    #使用断言确保我的数据格式是正确的
    assert(A2.shape == (1, X.shape[1]))
    
    cache = {"Z1": Z1,
             "A1": A1,
             "Z2": Z2,
             "A2": A2}
    
    return A2, cache

测试:

X_assess, parameters = forward_propagation_test_case()

A2, cache = forward_propagation(X_assess, parameters)

# Note: we use the mean here just to make sure that your output matches ours. 
print(np.mean(cache['Z1']) ,np.mean(cache['A1']),np.mean(cache['Z2']),np.mean(cache['A2']))

结果:

-0.000499755777742 -0.000496963353232 0.000438187450959 0.500109546852

现在我们已经计算了A[2],a[2](i)包含了训练集里每个数值,现在我们就可以构建成本函数了。

 

练习:实现compute_cost()来计算成本的值 J   

有很多的方法都可以计算交叉熵损失,比如下面的这个公式,我们在python中可以这么实现: 

logprobs = np.multiply(np.log(A2),Y)
cost = - np.sum(logprobs)                # 不需要使用循环就可以直接算出来。

当然,你也可以使用 np.multiply()然后使用 np.sum()或者直接使用 np.dot() 
现在我们正式开始构建计算成本的函数:

# GRADED FUNCTION: compute_cost

def compute_cost(A2, Y, parameters):
    """
    计算方程(6)中给出的交叉熵成本,

    参数:
         A2 - 使用sigmoid()函数计算的第二次激活后的数值
         Y - "True"标签向量,维度为(1,数量)
         parameters - 一个包含W1,B1,W2和B2的字典类型的变量

    返回:
         成本 - 交叉熵成本给出方程(13)
    """
    
    m = Y.shape[1] # number of example

    # 计算成本
    ### START CODE HERE ### (≈ 2 lines of code)
    logprobs = np.multiply(np.log(A2),Y) + np.multiply(np.log(1 - A2),1 - Y)
    cost = - np.sum(logprobs)/m
    ### END CODE HERE ###
    
    cost = np.squeeze(cost)     # makes sure cost is the dimension we expect. 
                                # E.g., turns [[17]] into 17 
    assert(isinstance(cost, float))
    
    return cost

测试:

A2, Y_assess, parameters = compute_cost_test_case()
print("cost = " + str(compute_cost(A2, Y_assess, parameters)))

结果:

cost = 0.692919893776

使用前向传播期间计算的cache,现在可以利用它实现反向传播。

 

练习:实现反向传播函数backward_propagation().

说明:反向传播通常是深度学习中最难(数学意义)部分,为了帮助你,这里有反向传播讲座的幻灯片, 由于我们正在构建向量化实现,因此我们将需要使用这下面的六个方程: 

为了计算dZ1,里需要计算 g[1]′(Z[1]), g[1](...) 是tanh激活函数,如果a=g[1](z)那么g[1]′(z)=1−a2。所以我们需要使用 (1 - np.power(A1, 2))来计算g[1]′(Z[1]) 。

# GRADED FUNCTION: backward_propagation

def backward_propagation(parameters, cache, X, Y):
    """
    使用上述说明搭建反向传播函数。

    参数:
     parameters - 包含我们的参数的一个字典类型的变量。
     cache - 包含“Z1”,“A1”,“Z2”和“A2”的字典类型的变量。
     X - 输入数据,维度为(2,数量)
     Y - “True”标签,维度为(1,数量)

    返回:
     grads - 包含W和b的导数一个字典类型的变量。
    """
    m = X.shape[1]
    
    # First, retrieve W1 and W2 from the dictionary "parameters".
    ### START CODE HERE ### (≈ 2 lines of code)
    W1 = parameters["W1"]  # 在字典中获取对应参数
    W2 = parameters["W2"]
    ### END CODE HERE ###
        
    # Retrieve also A1 and A2 from dictionary "cache".
    ### START CODE HERE ### (≈ 2 lines of code)
    A1 = cache["A1"]
    A2 = cache["A2"]
    ### END CODE HERE ###
    
    # 反向传播:计算 dW1, db1, dW2, db2. 
    ### START CODE HERE ### (≈ 6 lines of code, corresponding to 6 equations on slide above)
    dZ2 = A2 - Y
    dW2 = (1 / m) * np.dot(dZ2, A1.T)
    db2 = (1 / m) * np.sum(dZ2, axis=1, keepdims=True)  # keepdims是为了保持矩阵的维度特性
    dZ1 = np.multiply(np.dot(W2.T, dZ2), 1 - np.power(A1, 2))
    dW1 = (1 / m) * np.dot(dZ1, X.T)
    db1 = (1 / m) * np.sum(dZ1, axis=1, keepdims=True)
    ### END CODE HERE ###
    
    grads = {"dW1": dW1,
             "db1": db1,
             "dW2": dW2,
             "db2": db2}
    
    return grads

测试:

parameters, cache, X_assess, Y_assess = backward_propagation_test_case()

grads = backward_propagation(parameters, cache, X_assess, Y_assess)
print ("dW1 = "+ str(grads["dW1"]))
print ("db1 = "+ str(grads["db1"]))
print ("dW2 = "+ str(grads["dW2"]))
print ("db2 = "+ str(grads["db2"]))

结果:

dW1 = [[ 0.01018708 -0.00708701]
 [ 0.00873447 -0.0060768 ]
 [-0.00530847  0.00369379]
 [-0.02206365  0.01535126]]
db1 = [[-0.00069728]
 [-0.00060606]
 [ 0.000364  ]
 [ 0.00151207]]
dW2 = [[ 0.00363613  0.03153604  0.01162914 -0.01318316]]  # 2个[]表示维度为2
db2 = [[ 0.06589489]]

 

练习:实施更新规则。

使用梯度下降,您必须使用(dW1,db1,dW2,db2)才能更新(W1,b1,W2,b2),更新算法如下: 

我们需要选择一个良好的学习速率,我们可以看一下下面这两个图(由Adam Harley提供): 

上面两个图分别代表了具有良好学习速率(收敛)和不良学习速率(发散)的梯度下降算法。

# GRADED FUNCTION: update_parameters

def update_parameters(parameters, grads, learning_rate = 1.2):
    """
     使用上面给出的梯度下降更新规则更新参数

    参数:
     parameters - 包含参数的字典类型的变量。
     grads - 包含导数值的字典类型的变量。
     learning_rate - 学习速率

    返回:
     parameters - 包含更新参数的字典类型的变量。
    """
    # Retrieve each parameter from the dictionary "parameters"
    ### START CODE HERE ### (≈ 4 lines of code)
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    ### END CODE HERE ###
    
    # Retrieve each gradient from the dictionary "grads"
    ### START CODE HERE ### (≈ 4 lines of code)
    dW1 = grads["dW1"]
    db1 = grads["db1"]
    dW2 = grads["dW2"]
    db2 = grads["db2"]
    ## END CODE HERE ###
    
    # 为每个参数更新规则
    ### START CODE HERE ### (≈ 4 lines of code)
    W1 -= learning_rate * dW1
    b1 -= learning_rate * db1
    W2 -= learning_rate * dW2
    b2 -= learning_rate * db2
    ### END CODE HERE ###
    
    parameters = {"W1": W1,
                  "b1": b1,
                  "W2": W2,
                  "b2": b2}
    
    return parameters

测试:

parameters, grads = update_parameters_test_case()
parameters = update_parameters(parameters, grads)

print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))

结果:

W1 = [[-0.00643025  0.01936718]
 [-0.02410458  0.03978052]
 [-0.01653973 -0.02096177]
 [ 0.01046864 -0.05990141]]
b1 = [[ -1.02420756e-06]
 [  1.27373948e-05]
 [  8.32996807e-07]
 [ -3.20136836e-06]]
W2 = [[-0.01041081 -0.04463285  0.01758031  0.04747113]]
b2 = [[ 0.00010457]]

 

4.4 -在nn_model()中集成4.1、4.2和4.3

练习:在nn_model()中建立你的神经网络模型。 说明:神经网络模型必须以正确的顺序使用前面的函数。

# GRADED FUNCTION: nn_model

def nn_model(X, Y, n_h, num_iterations = 10000, print_cost=False):
    """
    参数:
        X - 数据集,维度为(2,示例数)
        Y - 标签,维度为(1,示例数)
        n_h - 隐藏层的数量
        num_iterations - 梯度下降循环中的迭代次数
        print_cost - 如果为True,则每1000次迭代打印一次成本数值

    返回:
        parameters - 模型学习的参数,它们可以用来进行预测。
    """
    
    np.random.seed(3)  # 指定随机种子
    n_x = layer_sizes(X, Y)[0]
    n_y = layer_sizes(X, Y)[2]
    
    # Initialize parameters, then retrieve W1, b1, W2, b2. Inputs: "n_x, n_h, n_y". Outputs = "W1, b1, W2, b2, parameters".
    ### START CODE HERE ### (≈ 5 lines of code)
    parameters = initialize_parameters(n_x, n_h, n_y)
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    ### END CODE HERE ###
    
    # Loop (gradient descent)

    for i in range(0, num_iterations):
         
        ### START CODE HERE ### (≈ 4 lines of code)
        # Forward propagation. Inputs: "X, parameters". Outputs: "A2, cache".
        A2, cache = forward_propagation(X, parameters)
        
        # Cost function. Inputs: "A2, Y, parameters". Outputs: "cost".
        cost = compute_cost(A2, Y, parameters)
 
        # Backpropagation. Inputs: "parameters, cache, X, Y". Outputs: "grads".
        grads = backward_propagation(parameters, cache, X, Y)
 
        # Gradient descent parameter update. Inputs: "parameters, grads". Outputs: "parameters".
        parameters = update_parameters(parameters, grads)
        
        ### END CODE HERE ###
        
        # Print the cost every 1000 iterations
        if print_cost and i % 1000 == 0:
            print ("Cost after iteration %i: %f" %(i, cost))

    return parameters

测试:

X_assess, Y_assess = nn_model_test_case()

parameters = nn_model(X_assess, Y_assess, 4, num_iterations=10000, print_cost=False)
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))

结果:

W1 = [[-4.18494482  5.33220319]
 [-7.52989354  1.24306197]
 [-4.19295428  5.32631786]
 [ 7.52983748 -1.24309404]]
b1 = [[ 2.32926815]
 [ 3.7945905 ]
 [ 2.33002544]
 [-3.79468791]]
W2 = [[-6033.83672179 -6008.12981272 -6033.10095329  6008.06636901]]
b2 = [[-52.66607704]]

 

4.5-预测

练习:通过构建 predict() 来使用您的模型进行预测。使用正向传播来预测结果。

# GRADED FUNCTION: predict

def predict(parameters, X):
    """
    使用学习的参数,为X中的每个示例预测一个类

    参数:
        parameters - 包含参数的字典类型的变量。
        X - 输入数据(n_x,m)

    返回
        predictions - 我们模型预测的向量(红色:0 /蓝色:1)
    """
    
    # 使用正向传播计算概率,并使用0.5作为阈值分类为0/1
    ### START CODE HERE ### (≈ 2 lines of code)
    A2, cache = forward_propagation(X, parameters)
    predictions = np.round(A2)  # 进行四舍五入
    ### END CODE HERE ###
    
    return predictions

测试:

parameters, X_assess = predict_test_case()

predictions = predict(parameters, X_assess)
print("predictions mean = " + str(np.mean(predictions)))

结果:

predictions mean = 0.666666666667

现在我们把所有的东西基本都做完了,我们开始正式用浅层神经网络训练数据。

# Build a model with a n_h-dimensional hidden layer
parameters = nn_model(X, Y, n_h = 4, num_iterations = 10000, print_cost=True)

# 绘制边界
plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y.reshape(-1,))
plt.title("Decision Boundary for hidden layer size " + str(4))
Cost after iteration 0: 0.693048
Cost after iteration 1000: 0.288083
Cost after iteration 2000: 0.254385
Cost after iteration 3000: 0.233864
Cost after iteration 4000: 0.226792
Cost after iteration 5000: 0.222644
Cost after iteration 6000: 0.219731
Cost after iteration 7000: 0.217504
Cost after iteration 8000: 0.219504
Cost after iteration 9000: 0.218571
Text(0.5,1,'Decision Boundary for hidden layer size 4')

打印准确性

# Print accuracy
predictions = predict(parameters, X)
print ('Accuracy: %d' % float((np.dot(Y,predictions.T) + np.dot(1-Y,1-predictions.T))/float(Y.size)*100) + '%')

结果:

Accuracy: 90%

与逻辑回归相比,精确度非常高。这个模型已经学会了花的图案!与逻辑回归不同,神经网络甚至能够学习高度非线性的决策边界。 现在,让我们尝试几个隐藏的层大小。

 

4.6 -调整隐藏层大小(可选/未分级练习)

运行以下代码。可能需要1-2分钟。对于不同的隐藏层大小,您将观察到模型的不同行为。

# This may take about 2 minutes to run

plt.figure(figsize=(16, 32))
hidden_layer_sizes = [1, 2, 3, 4, 5, 10, 20]  # 隐藏层数量
for i, n_h in enumerate(hidden_layer_sizes):
    plt.subplot(5, 2, i+1)
    plt.title('Hidden Layer of size %d' % n_h)
    parameters = nn_model(X, Y, n_h, num_iterations = 5000)
    plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y.reshape(-1,))
    predictions = predict(parameters, X)
    accuracy = float((np.dot(Y,predictions.T) + np.dot(1-Y,1-predictions.T))/float(Y.size)*100)
    print ("Accuracy for {} hidden units: {} %".format(n_h, accuracy))

结果:

Accuracy for 1 hidden units: 67.5 %
Accuracy for 2 hidden units: 67.25 %
Accuracy for 3 hidden units: 90.75 %
Accuracy for 4 hidden units: 90.5 %
Accuracy for 5 hidden units: 91.25 %      # 此时准确度最好
Accuracy for 10 hidden units: 90.25 %
Accuracy for 20 hidden units: 90.0 %      # 出现过拟合的情况

解释:

较大的模型(具有更多隐藏单元)能够更好地适应训练集,直到最终的最大模型过度拟合数据。 
最好的隐藏层大小似乎在n_h = 5附近。实际上,这里的值似乎很适合数据,而且不会引起过度拟合。 
我们还将在后面学习有关正则化的知识,它允许我们使用非常大的模型(如n_h = 50),而不会出现太多过度拟合。

 

5-在其他数据集上的性能

可选问题:

如果愿意,您可以探索一些可选的/未分级的问题:

  • 当改变sigmoid激活或ReLU激活的tanh激活时会发生什么?
  • 改变learning_rate的数值会发生什么
  • 如果我们改变数据集呢?
# Datasets
noisy_circles, noisy_moons, blobs, gaussian_quantiles, no_structure = load_extra_datasets()

datasets = {"noisy_circles": noisy_circles,
            "noisy_moons": noisy_moons,
            "blobs": blobs,
            "gaussian_quantiles": gaussian_quantiles}

### START CODE HERE ### (choose your dataset)
dataset = "gaussian_quantiles"
### END CODE HERE ###

X, Y = datasets[dataset]
X, Y = X.T, Y.reshape(1, Y.shape[0])

# make blobs binary
if dataset == "blobs":
    Y = Y%2

# 可视化数据
plt.scatter(X[0, :], X[1, :], c=Y.flatten(), s=40, cmap=plt.cm.Spectral);

结果:

重新运行 4.6 中的代码,得到结果:

Accuracy for 1 hidden units: 68.5 %
Accuracy for 2 hidden units: 79.0 %
Accuracy for 3 hidden units: 96.5 %
Accuracy for 4 hidden units: 97.5 %
Accuracy for 5 hidden units: 96.5 %
Accuracy for 10 hidden units: 100.0 %   # 当隐藏层的神经元个数>5时,准确度可以达到100%
Accuracy for 20 hidden units: 100.0 %

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值