神经网络-浅层神经网络

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
部分Python代码如下,在该网络上运行单神经网络使用的判断有无猫的数据集集,在第一层激活函数为sigmoid函数时,训练集准确率达到100%,测试集准确率达到72%,测试集准确率比单神经网络高2%。在第一层激活函数为tanh函数时,测试集准确率达到76%。

# 初始化参数w和b。
import numpy as np

def initialize_parameters(n_x, n_h, n_y):
    """
    参数:
    n_x -- 输入层的神经元个数
    n_h -- 隐藏层的神经元个数
    n_y -- 输出层的神经元个数
    """
    
    np.random.seed(2)
    
    # 随机初始化第一层(隐藏层)相关的参数w, b.
    W1 = np.random.randn(n_h, n_x) * 0.01
    b1 = np.zeros(shape=(n_h, 1))
    
    # 初始化第二层的w和b
    W2 = np.random.randn(n_y, n_h) * 0.01
    b2 = np.zeros(shape=(n_y, 1))
                  
    parameters = {"W1": W1,
                  "b1": b1,
                  "W2": W2,
                  "b2": b2}
    
    return parameters              
# 前向传播了
def forward_propagation(X, parameters):
    """
    参数:
    X -- 输入特征,维度是 (横纵坐标, 样本数)
    parameters -- 参数w和b
    """
    # 从字典中取出参数
    W1 = parameters['W1']
    b1 = parameters['b1']
    W2 = parameters['W2']
    b2 = parameters['b2']
    
    # 实现前向传播算法
    Z1 = np.dot(W1, X) + b1
    A1 = np.tanh(Z1)
    #A1 = sigmoid(Z1)
    Z2 = np.dot(W2, A1) + b2
    A2 = sigmoid(Z2)
    
    cache = {"Z1": Z1,
             "A1": A1,
             "Z2": Z2,
             "A2": A2}
    
    return A2, cache
# 计算成本
def compute_cost(A2, Y, parameters):
    """   
    参数:
    A2 -- 神经网络最后一层的输出结果
    Y -- 数据的颜色标签
    """
    
    m = Y.shape[1] 
    
    logprobs = np.multiply(np.log(A2), Y) + np.multiply((1 - Y), np.log(1 - A2))
    cost = - np.sum(logprobs) / m
    
    return cost
# 反向传播
def backward_propagation(parameters, cache, X, Y):
    """
    参数:
    parameters -- 参数w和b
    cache -- 前向传播时保存起来的一些数据
    X -- 输入特征
    Y -- 标签
    """
    
    m = X.shape[1] # 获取样本数
    
    # 从字典中取出参数
    W1 = parameters['W1']
    W2 = parameters['W2']
        
    A1 = cache['A1']
    A2 = cache['A2']
    
    # 计算梯度(偏导数)
    dZ2= A2 - Y
    dW2 = (1 / m) * np.dot(dZ2, A1.T)
    db2 = (1 / m) * np.sum(dZ2, axis=1, keepdims=True)
    dZ1 = np.multiply(np.dot(W2.T, dZ2), 1 - np.power(A1, 2))
    #dZ1 = np.multiply(np.dot(W2.T, dZ2), A1*(1 - A1))
    dW1 = (1 / m) * np.dot(dZ1, X.T)
    db1 = (1 / m) * np.sum(dZ1, axis=1, keepdims=True)
    
    grads = {"dW1": dW1,
             "db1": db1,
             "dW2": dW2,
             "db2": db2}
    
    return grads # 返回计算得到的梯度
# 用上面得到的梯度来进行梯度下降(更新参数w和b,使其更优化)
def update_parameters(parameters, grads, learning_rate=1.2):
    """
    参数:
    parameters -- 参数w和b 
    grads -- 梯度
    """
    W1 = parameters['W1']
    b1 = parameters['b1']
    W2 = parameters['W2']
    b2 = parameters['b2']
    
    dW1 = grads['dW1']
    db1 = grads['db1']
    dW2 = grads['dW2']
    db2 = grads['db2']
    
    # 根据梯度和学习率来更新参数,使其更优
    W1 = W1 - learning_rate * dW1
    b1 = b1 - learning_rate * db1
    W2 = W2 - learning_rate * dW2
    b2 = b2 - learning_rate * db2
    
    parameters = {"W1": W1,
                  "b1": b1,
                  "W2": W2,
                  "b2": b2}
    
    return parameters
# 上面已经将各个所需的功能函数都编写好了。现在我们将它们组合在一个大函数中来构建出一个训练模型。
def nn_model(X, Y, n_h, num_iterations=10000, print_cost=False, learning_rate=0.01):
    """
    Arguments:
    X -- 输入特征
    Y -- 标签
    n_h -- 隐藏层的神经元个数
    num_iterations -- 训练多少次
    print_cost -- 是否打印出成本
    """
    
    np.random.seed(3)
    n_x = X.shape[0] # 根据输入特征的维度得出输入层的神经元个数
    n_y = Y.shape[0] # 根据标签的维度得出输出层的神经元个数
    
    # 初始化参数
    parameters = initialize_parameters(n_x, n_h, n_y)
    W1 = parameters['W1']
    b1 = parameters['b1']
    W2 = parameters['W2']
    b2 = parameters['b2']
    
    # 在这个循环里进行训练,一次一次地对参数进行优化
    for i in range(0, num_iterations):
        # 进行前向传播
        A2, cache = forward_propagation(X, parameters)
        
        # 计算出本次的成本
        cost = compute_cost(A2, Y, parameters)
 
        # 进行反向传播。根据前向传播得到的一些值算出梯度。
        grads = backward_propagation(parameters, cache, X, Y)
 
        # 根据梯度对参数进行一次优化(下降)
        parameters = update_parameters(parameters, grads, learning_rate)
                
        # 将本次训练的成本打印出来
        if print_cost and i % 1000 == 0:
            print ("在训练%i次后,成本是: %f" % (i, cost))

    return parameters
# 这个函数可以利用上面学习到的参数来对新数据进行预测
def predict(parameters, X):
    """    
    参数:
    parameters -- 训练得出的参数(学习到的参数)
    X -- 预测数据
    """
    
    # 预测其实就是简单地执行一次前向传播
    A2, cache = forward_propagation(X, parameters)
    predictions = np.round(A2) # 对结果进行四舍五入,小于0.5就是0,否则就是1
    
    return predictions
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值