LeetCode刷题第5题【最长回文子串】—解题思路及源码注释
结果预览
目录
一、题目描述
给你一个字符串 s,找到 s 中最长的回文子串
示例 1:
输入:s = "babad"
输出:"bab"
解释:"aba" 同样是符合题意的答案。
示例 2:
输入:s = "cbbd"
输出:"bb"
提示:
1 <= s.length <= 1000
s 仅由数字和英文字母组成
二、解题思路
1、问题理解
我们需要找到一个字符串中的最长回文子串。回文是指正着读和反着读都相同的字符串。这里要求我们找到最长的连续子串,并且这个子串是回文的。
2、解题思路
为了高效地找出最长的回文子串,我们可以利用 中心扩展法。回文的一个重要特性是其对称性:对于每个字符或者相邻的两个字符,我们可以将它们作为回文的中心,向两边扩展直到无法扩展为止。通过这种方法,我们可以找到所有可能的回文子串,并在过程中记录最长的回文子串。
中心扩展法:
- 对于一个回文子串,它有两个特性:
- 如果回文子串的长度是奇数,那么它的中心是一个字符。
- 如果回文子串的长度是偶数,那么它的中心是两个字符之间的空隙。
- 通过遍历每个字符(和每对相邻字符),以其为中心向外扩展,检查回文长度。记录下所有扩展过程中的最长回文。
步骤:
- 遍历字符串的每个字符,将其作为回文的中心。
- 对每个中心,分别尝试扩展出奇数长度回文和偶数长度回文。
- 记录并更新最长回文子串。
优化点:
- 我们只需要遍历一次字符串,通过中心扩展法就能在 O(n^2) 的时间复杂度下找到最长回文子串。由于只使用了常数空间,所以空间复杂度为
O(1)。
三、代码实现及注释
1、源码实现
class Solution {
public:
std::string longestPalindrome(std::string s) {
if (s.empty()) return "";
int n = s.length();
int start = 0, max_len = 1; // 起始位置和最大长度
// 中心扩展法
for (int i = 0; i < n; ++i) {
// 以 i 为中心扩展(奇数长度回文)
int len1 = expandAroundCenter(s, i, i);
// 以 i 和 i+1 为中心扩展(偶数长度回文)
int len2 = expandAroundCenter(s, i, i + 1);
// 更新最大回文子串的起始位置和长度
int len = std::max(len1, len2);
if (len > max_len) {
max_len = len;
start = i - (max_len - 1) / 2; // 计算回文子串的起始位置
}
}
return s.substr(start, max_len);
}
private:
// 扩展中心,返回回文的长度
int expandAroundCenter(const std::string& s, int left, int right) {
while (left >= 0 && right < s.length() && s[left] == s[right]) {
--left;
++right;
}
return right - left - 1; // 返回回文的长度
}
};
2、代码解释
- expandAroundCenter 函数:
- 该函数的作用是以 left 和 right 为中心向两边扩展,判断回文的长度。
- 每次判断左右字符是否相等,如果相等则继续扩展,直到左右字符不再相等为止。
- 最终返回回文串的长度。
- longestPalindrome 函数:
遍历字符串中的每个字符,利用 expandAroundCenter 来扩展回文。
对于每个字符,检查奇数长度和偶数长度的回文子串,更新最长回文子串的起始位置和长度。
- 输出:
substr(start, max_len):根据回文子串的起始位置和最大长度,截取字符串并返回。
四、执行效果
1、时间和空间复杂度分析
时间复杂度:
每次扩展的时间复杂度是 O(n),因为在每个位置进行的扩展最多需要 O(n) 的时间。由于我们遍历了每个字符一次,所以总时间复杂度是 O(n^2)。
空间复杂度:
由于我们没有使用额外的空间来存储回文子串(除了输入的字符串外),所以空间复杂度是 O(1)。