LeetCode刷题第5题【最长回文子串】---解题思路及源码注释

LeetCode刷题第5题【最长回文子串】—解题思路及源码注释

结果预览

代码结果预览

一、题目描述

给你一个字符串 s,找到 s 中最长的回文子串

示例 1:

输入:s = "babad"
输出:"bab"
解释:"aba" 同样是符合题意的答案。

示例 2:

输入:s = "cbbd"
输出:"bb"

提示:

1 <= s.length <= 1000
s 仅由数字和英文字母组成

二、解题思路

1、问题理解

我们需要找到一个字符串中的最长回文子串。回文是指正着读和反着读都相同的字符串。这里要求我们找到最长的连续子串,并且这个子串是回文的。

2、解题思路

为了高效地找出最长的回文子串,我们可以利用 中心扩展法。回文的一个重要特性是其对称性:对于每个字符或者相邻的两个字符,我们可以将它们作为回文的中心,向两边扩展直到无法扩展为止。通过这种方法,我们可以找到所有可能的回文子串,并在过程中记录最长的回文子串。

中心扩展法:

  • 对于一个回文子串,它有两个特性:
    • 如果回文子串的长度是奇数,那么它的中心是一个字符。
    • 如果回文子串的长度是偶数,那么它的中心是两个字符之间的空隙。
  • 通过遍历每个字符(和每对相邻字符),以其为中心向外扩展,检查回文长度。记录下所有扩展过程中的最长回文。

步骤:

  1. 遍历字符串的每个字符,将其作为回文的中心。
  2. 对每个中心,分别尝试扩展出奇数长度回文和偶数长度回文。
  3. 记录并更新最长回文子串。

优化点:

  • 我们只需要遍历一次字符串,通过中心扩展法就能在 O(n^2) 的时间复杂度下找到最长回文子串。由于只使用了常数空间,所以空间复杂度为
    O(1)。

三、代码实现及注释

1、源码实现

class Solution {
public:
    std::string longestPalindrome(std::string s) {
        if (s.empty()) return "";
        
        int n = s.length();
        int start = 0, max_len = 1;  // 起始位置和最大长度

        // 中心扩展法
        for (int i = 0; i < n; ++i) {
            // 以 i 为中心扩展(奇数长度回文)
            int len1 = expandAroundCenter(s, i, i);
            // 以 i 和 i+1 为中心扩展(偶数长度回文)
            int len2 = expandAroundCenter(s, i, i + 1);
            
            // 更新最大回文子串的起始位置和长度
            int len = std::max(len1, len2);
            if (len > max_len) {
                max_len = len;
                start = i - (max_len - 1) / 2;  // 计算回文子串的起始位置
            }
        }
        
        return s.substr(start, max_len);
    }

private:
    // 扩展中心,返回回文的长度
    int expandAroundCenter(const std::string& s, int left, int right) {
        while (left >= 0 && right < s.length() && s[left] == s[right]) {
            --left;
            ++right;
        }
        return right - left - 1;  // 返回回文的长度
    }
};

2、代码解释

  1. expandAroundCenter 函数:
  • 该函数的作用是以 left 和 right 为中心向两边扩展,判断回文的长度。
  • 每次判断左右字符是否相等,如果相等则继续扩展,直到左右字符不再相等为止。
  • 最终返回回文串的长度。
  1. longestPalindrome 函数:

遍历字符串中的每个字符,利用 expandAroundCenter 来扩展回文。
对于每个字符,检查奇数长度和偶数长度的回文子串,更新最长回文子串的起始位置和长度。

  1. 输出:

substr(start, max_len):根据回文子串的起始位置和最大长度,截取字符串并返回。

四、执行效果

代码结果预览

1、时间和空间复杂度分析

时间复杂度:
每次扩展的时间复杂度是 O(n),因为在每个位置进行的扩展最多需要 O(n) 的时间。由于我们遍历了每个字符一次,所以总时间复杂度是 O(n^2)。
空间复杂度:
由于我们没有使用额外的空间来存储回文子串(除了输入的字符串外),所以空间复杂度是 O(1)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值