稀疏传感器放置
Title
Nakai, Kumi, et al. “Effect of objective function on data-driven greedy sparse sensor optimization.” IEEE Access 9 (2021): 46731-46743.
Autor information
引用格式:Kohara, Akira, et al. “Sensor placement minimizing the state estimation mean square error: Performance guarantees of greedy solutions.” 2020 59th IEEE Conference on Decision and Control (CDC). IEEE, 2020.pdf链接
Full text
Abtract
考虑了选择估计高维数据的最佳传感器集的问题。 贪心法采用基于优化设计的D-、A-和E-最优性准则的目标函数,分别最大化行列式、最小化逆迹和最大化Fisher信息矩阵的最小特征值。 首先,根据潜在状态变量和传感器的数量导出 Fisher 信息矩阵。 然后,引入了基于 A 最优性的目标函数的统一公式,并证明它是子模的,这为贪婪方法的性能提供了下界。 接下来,将基于 D-、A- 和 E- 最优性的贪婪方法应用于随机生成的系统和有关全球气候的实用数据集; 这些分别对应于统计方面的几乎理想和实际情况。 基于 D 和 A 最优性的贪婪方法选择更好的传感器。 基于E最优性的贪婪方法在过采样情况下并没有根据E最优性指标选择更好的传感器,而基于A最优性的贪婪方法在E最优性指标方面出人意料地做到了。 基于 E 最优性的贪婪方法的性能较差是由于 E 最优性指标中缺乏子模性,而基于 A 最优性的贪婪方法的性能较好是由于 A 最优性和 E 最优性之间的关系 . 在系统的统计数据众所周知的理想情况下,D 和 A 最优性指标似乎很重要,因此,基于 D 和 A 最优性的贪婪方法适用于精确重建。 另一方面,E 最优性指标在系统统计数据不为人知的更实际情况下似乎是至关重要的,因此,基于 A 最优性的贪婪方法因其在术语方面的优势而表现最佳 E-最优性指数。
Introduction
最佳传感器选择问题与实验的最佳设计密切相关,它提供了估计参数和预测响应的小方差值。根据最优实验设计的统计标准,传感器选择问题的目标函数是使用** Fisher 信息矩阵定义的**,该矩阵对应于估计器协方差矩阵的逆矩阵。
D-最优性标准导致回归估计的置信椭圆体的体积最小化。 Joshi 和 Boyd 在传感器选择问题中采用了 D 最优性。 他们提出利用凸松弛方法解决了 D 最优设计的近似问题 。 随着随机算法 的发展,该算法最近得到了改进。 Manohar等人提出了一种基于离散经验插值法 (DEIM) 和 QR-DEIM (QDEIM) 的贪心法; 这些是使用稀疏采样点的降阶建模框架中的方法。 Manohar等人表明该方法在显着快于凸优化方法方面具有优势。 他们的贪婪方法通过QR 旋转候选传感器或相关矩阵的行向量来优化传感器位置。 这种贪婪的方法显示 对应于选择范数最大的行向量,并使用 Gram-Schmidt过程从矩阵的其余部分中消除其分量,尽管 QR 实现在实际环境中要快得多。 最近,Saito 等人 在数学上说明了 Manohar 等人采用的目标函数对应于
传感器数量小于状态变量
‾
\underline {传感器数量小于状态变量}
传感器数量小于状态变量个数时D-最优目标函数的最大化,推导出了一个与传感器数量无关的基于D-最优的目标函数的统一表达式。此外,他们成功地提出了一种基于 D 最优性的高效贪婪方法:在传感器数量分别小于和大于状态变量的情况下,基于 QR 分解的贪婪方法和行列式的直接最大化的混合 . 所提出的方法被证实可以提供接近最优的传感器以及凸近似方法,但与凸近似方法和基于 QR 的贪婪方法相比显着降低了计算成本 。 此外,在扩展 D 最优性 的框架下,还开发了一种解决相关噪声下传感器选择问题的贪婪方法。
此外,由于潜在状态变量配备了先验信息(平均值和方差),并且问题从第一个传感器的选择开始正则化,因此尚未推导出用于欠定情况的贪婪传感器选择的公式。 请注意,基于 D 最优性的公式已在 Saito 等人中进行了讨论。 因此,据我们所知,尚未研究贪婪方法及其在欠定情况下 A 和 E 最优性的性能。本研究的目的是深入了解适用于稀疏传感器选择问题的目标函数,特别关注通过贪心法重建高维数据快照。 为此,提出并描述了基于 D、A 和 E 最优性(包括欠定情况)的贪婪方法,并根据其性能对其进行了评估。
本文的主要贡献如下: • 欠定情况的 Fisher 信息矩阵是在第二节中测量矩阵的可观察子空间中导出的。
• 在II-B 和II-C 节中推导了针对欠定和超定情况的基于A 和E 最优性的目标函数。 首次引入无正则项欠定情况下基于A-和E-最优性的贪心方法; 在以前的研究中,它们只针对超定情况进行了讨论。
• 基于A 最优性的目标函数的统一公式被引入并被证明是次模的,它提供了第III-B 节中贪心法性能的下界。 另一方面,基于 E 最优性的目标函数被证明既不是次模也不是超模,而在第 III-C 节的超定情况下它是单调的。
• 针对统计方面的理想和非理想问题采用基于D-、A-和E-最优性的贪心方法,第四节提供了针对给定数据集和情况选择合适目标函数的指导。
Description of the problem
线性系统:
y
=
H
U
z
=
C
z
(
1
)
y=HUz=Cz\ (1)
y=HUz=Cz (1)
p
,
n
,
r
p, n, r
p,n,r分别表示传感器数量, 空间维度, 状态变量的数量
z
^
=
C
+
y
=
{
C
T
(
C
C
T
)
−
1
y
p
≤
r
(
C
C
T
)
−
1
C
T
y
p
>
r
\hat z=C^+y = \begin{cases} C^T(CC^T)^{-1}y & p \le r \\ (CC^T)^{-1}C^Ty & p > r \end{cases}
z^=C+y={CT(CCT)−1y(CCT)−1CTyp≤rp>r
Main contribution
接下来作者描述了A-, D-, E-optimality下的目标函数,
p
≤
r
p\le r
p≤r和
p
>
r
p>r
p>r的情况都分别列出。并且将A-, D-optimality贪心算法的第
k
k
k个传感器选择的快速算法的形式写出。
对于 D 最优性,在
p
≤
r
p\le r
p≤r 和
p
>
r
p > r
p>r 的两种情况下推导出目标函数的统一表达式。 D最优性的目标函数被重新定义为
d
e
t
(
C
T
C
+
ϵ
I
)
‾
\underline {det(C^TC+\epsilon I)}
det(CTC+ϵI),其中
ϵ
\epsilon
ϵ是一个足够小的数。 已被证明是单调子模函数[8]。
作者在此基础上证明A最优性
a
r
g
m
i
n
t
r
[
(
C
T
C
+
ϵ
I
)
−
1
]
arg\ min\ tr[(C^TC+\epsilon I)^{-1}]
arg min tr[(CTC+ϵI)−1]
目标函数设为:
f
A
(
S
)
=
−
t
r
[
(
C
S
T
C
S
+
ϵ
I
)
−
1
]
+
r
ϵ
f_A(S)=-tr[(C^T_SC_S+\epsilon I)^{-1}]+\frac {r}{\epsilon}
fA(S)=−tr[(CSTCS+ϵI)−1]+ϵr
然后证明他是单调子模函数。
最后利用数字实例证明E-optimality不满足子模性。
Conclusion
AG 方法不仅在逆迹的最小化上效果最好,而且在最小特征值的最大化上效果最好。 这是因为 AG 方法的目标函数强烈要求增加最小特征值,而 EG 方法由于不存在子模性而对最小特征值的最大化不起作用。构建了一种新的基于 A 最优性的基于近端算子的传感器选择算法 [12]。
这些结果似乎也适用于使用 DEIM 或 Q-DEIM 框架的降阶模型(ROM)的采样点。 这是因为 Q-DEIM 中采用的过程,即 QR 分解,对应于使用 D 最优性标准对小于或等于潜在变量的传感器数量进行优化,如前所述。
尽管 DEIM 框架中的过采样是一个问题,但我们建议使用最佳实验设计可以直接导航,如本研究中所做的那样。
这表明其他优化设计,例如 A 优化或 E 优化设计,也可用于为 ROM-DEIM 框架选择采样点。 这些应用程序很有趣,尽管我们需要解决 ROM-DEIM 框架 [14]、[22] 的假设在传感器选择问题方面是否相对理想或不理想,并阐明在D最优和A最优之间哪一个是更好的选择。 比较在参考文献 [8] 的附录中进行了部分演示。