【文献阅读】

Title

Sensor placement by maximal projection on minimum eigenspace for linear inverse problems.通过线性逆问题的最小特征空间上的最大投影放置传感器

Autor information

引用格式:Jiang, Chaoyang, Yeng Chai Soh, and Hua Li. “Sensor placement by maximal projection on minimum eigenspace for linear inverse problems.” IEEE Transactions on Signal Processing 64.21 (2016): 5595-5610.pdf链接

Full text

Abtract

本文介绍了两种新的贪婪传感器放置算法,分别称为最小非零特征值追踪 (MNEP) 和**最小特征空间上的最大投影 **(MPME),用于线性逆问题,并更加强调 MPME 算法与现有方法的性能比较。 在 MNEP 和 MPME 中,我们一个接一个地选择传感位置。 这样,在确定每个感知位置后,通过检查估计精度是否满足,可以确定所需的最少传感器节点数。
对于 MPME 算法,最小特征空间定义为与对偶观测矩阵的最小特征值相关联的特征空间。 对于每个传感位置,其观测向量在最小特征空间上的投影关于估计参数的最坏情况误差方差 (WCEV)显示为单调递减。 我们选择其观测向量在当前对偶观测矩阵的最小特征空间上具有最大投影的传感位置。 所提出的 MPME 被证明是计算效率最高的算法之一。 我们的蒙特卡罗模拟表明,MPME 在 WCEV 和估计参数的均方误差 (MSE) 方面优于凸松弛方法 [1]、SparSenSe 方法 [2] 和 FrameSense 方法 [3],尤其是当数量 可用的传感器节点非常有限。

Introduction

确定所需传感器节点的最少数量及其位置在传感器网络设计中至关重要。 对于线性逆问题,传感器放置是在已知空间域内寻求最少数量的所需传感器节点及其对应的传感位置,使得估计精度能够满足要求。 具体来说,假设所有潜在传感位置的观测模型都是已知的,我们想要确定所需传感器的最少数量,以便在预定义的精度内恢复感兴趣的物理场。 显然,一种直接的方法是评估候选传感位置所有潜在大小的所有可能组合的性能,然后选择传感器节点数量最少的满足所需估计精度的传感器节点。 除了枚举法,最优解也可以通过分支定界法[9]、[10]获得,近年来,线性逆问题的传感器放置引起了越来越多的关注,以通过计算更有效的方法 [1]-[8]、[11]-[15] 找到次优解。

Prior work

已经提出启发式方法来降低穷举搜索的成本。 最简单的一种是将传感器节点放置在感兴趣的物理场 [5] 的适当正交分量的空间最大值和最小值处。 这种方法简单但只适用于一些特殊情况[6]。 其他启发式算法包括遗传算法 [13]、粒子群优化器 [14]、禁忌搜索 [14] 和交叉熵优化 [15]。 它们都涉及高昂的计算成本,并且解决方案没有最优性保证
Joshi 和 Boyd [1] 将传感器放置问题表述为优雅的非凸优化问题,并通过将表示传感器放置的非凸布尔约束松弛到凸框集,将其近似为凸优化问题。 这种凸松弛随后被用于许多作品 [2]、[11]、[16]-[19]。 基于凸优化问题的解决方案,可以很容易地确定感测位置。 但是由于非凸优化问题和凸优化问题之间的差距,传感器放置可能会导致病态观测模型,特别是当传感器节点数量非常有限时。
这样的结果已被证明并不比其他作品好[3]、[18]、[19]。 然而,[1] 中的作者提供了一种局部优化技术来改善结果。 这种技术在计算上是昂贵的,但一些数值例子表明,通过局部优化,凸松弛方法确实可以提供良好的结果。
传感器放置问题也通过一些贪婪算法解决,其中传感器位置是通过优化估计物理场误差的一些代理来单独确定的,例如 Fisher 信息矩阵的行列式 [12] 和条件数 [6] ]–[8] 或观察矩阵的框架势 [3]。 估计误差的 η-置信椭球取决于 Fisher 信息矩阵 [1] 的行列式,该矩阵在 [12] 中使用一种贪婪方法进行了优化,但在 [3] 的示例中显示它并不比其他方法好。 对于传感器放置问题,解决方案的最低要求是观测模型应条件良好。
因此,一些研究人员通过最小化观察矩阵的条件数来确定传感位置[6]-[8]。 然而,条件数是非奇异矩阵的概念,我们需要首先确定一组感知位置以保证观察矩阵是非奇异的[7],这是一个组合问题。 此外,观测矩阵的最小条件数并不意味着最小估计误差,除非所有观测向量具有相同的范数,因为应考虑传感能量,这与信噪比有关。 最近,Ranieri 等人[3] 通过最小化观察矩阵的帧势提供了一种新颖的贪心算法。 这种方法在计算上是有效的,但是: 1) 像条件数最小化一样,它只对所有观察向量具有相同范数的情况有效; 2)它不能保证观察矩阵是良态的。
上述所有工作都集中在传感器节点数量固定的情况下。 一种稀疏促进技术已被用于通过向成本函数添加稀疏促进惩罚项来最小化所需传感器节点的数量 [2]。 当估计参数的维度较小时(如参考文献[2]的例子中维度设置为2),该方法效果很好。 然而,如果估计参数的维数很大(例如,几十个,这在流体场重建问题[6]、[7]、[20]中很常见),这种方法在确定所需的传感器节点最小数量时将无效,这将在后面详细讨论。
除了线性逆问题的传感器放置外,许多其他优秀的传感器放置工作都集中在连续系统 [11]、非线性模型 [16]、节能 [4]、[18]、动态系统状态估计 [18]、 [19]、[21]–[23] 和高斯过程插值 [24]–[27]。

Author contribution

在本文中,我们提出了一种新的贪心算法来最小化所需传感器节点的数量并确定它们的位置以解决线性逆问题,从而使估计误差满足要求。 我们通过最大化每个观测向量到当前对偶观测矩阵的最小特征值的特征空间的投影来逐个确定传感位置,直到满足估计精度。 结果表明,这样的投影关于最坏情况误差方差 (WCEV)是单调递减的 。
与最先进的技术相比,我们称之为最小特征空间上的最大投影(MPME)的贪婪算法具有以下优点:
• MPME 可以很容易地确定所需传感器节点的最小数量。
• MPME 在 WCEV 和估计向量的均方误差 (MSE) 方面优于凸松弛方法 [1]、SparSenSe 方法 [2] 和 FrameSense 方法 [3],特别是当可用的数量 传感器节点非常有限。
• MPME 可以保证观察矩阵条件良好,但凸松弛、SparSenSe 和FrameSense 方法不能保证这样的条件,特别是当可用传感器节点的数量非常有限时。
• 对于一般的传感器放置问题,没有局部优化的 MPME [1] 优于具有局部优化的最新技术。
• 提议的MPME 在计算上是最有效的传感器放置算法之一。

Problem statement

f = Φ ^ α f=\hat \Phi\alpha f=Φ^α
f ∈ R N f\in\mathcal R^N fRN的物理场, α ∈ R n \alpha\in\mathcal R^n αRn,是已知的全列秩矩阵 ,我们称之为信号表示矩阵及其列向量构成了物理场的基础, n < < N n<<N n<<N,
y = H f + v = Φ α + v y=Hf+v=\Phi\alpha+v y=Hf+v=Φα+v
{ s 1 , . . . , s M } \{s_1,...,s_M\} {s1,...,sM}索引的 Φ ^ \hat \Phi Φ^的行。
最小方差无偏估计
α ^ = Φ + y ,   Φ + = ( Φ T Φ ) − 1 Φ T \hat \alpha=\Phi^{+}y,\ \Phi^+=(\Phi ^T\Phi)^{-1}\Phi ^T α^=Φ+y, Φ+=(ΦTΦ)1ΦT
传感器数量大于模式大小的时候。 Ψ = Φ T Φ \Psi=\Phi^T\Phi Ψ=ΦTΦ称为对偶观测矩阵。 α ^ \hat\alpha α^均方根误差如下
M S E ( α ^ ) = E ( ∣ ∣ α ^ − α ∣ ∣ 2 2 ) = ρ 2 t r ( Ψ − 1 ) MSE(\hat\alpha)=E(||\hat\alpha-\alpha||_2^2)=\rho^2tr(\Psi^{-1}) MSE(α^)=E(∣∣α^α22)=ρ2tr(Ψ1)
方差如下:
∑ = ρ 2 Ψ − 1 \sum=\rho^2\Psi^{-1} =ρ2Ψ1
α ^ \hat\alpha α^的最坏情况误差方差(WCEV)是:
W C E V ( α ^ ) = max ⁡ ∣ ∣ x ∣ ∣ 2 = 1 x T ∑ x = λ m a x ( ∑ ) WCEV(\hat\alpha)=\max_{||x||_2=1}x^T\sum x=\lambda_{max}(\sum) WCEV(α^)=∣∣x2=1maxxTx=λmax()

M S E ( α ^ ) = ρ 2 ∣ ∣ Φ + ∣ ∣ F 2 W C E V ( α ^ ) = ρ 2 ∣ ∣ Φ + ∣ ∣ 2 2 W C E V ≤ M S E ≤ n W C E V MSE(\hat\alpha)=\rho^2||\Phi^+||_F^2\\ WCEV(\hat\alpha)=\rho^2||\Phi^+||_2^2\\ WCEV\le MSE \le nWCEV MSE(α^)=ρ2∣∣Φ+F2WCEV(α^)=ρ2∣∣Φ+22WCEVMSEnWCEV
传感器放置问题的目标是使 α ^ \hat\alpha α^的估计误差足够小,而且 Φ \Phi Φ的行数M最小化。

MPME

通过最大化观测向量在当前对偶观测矩阵Ψk−1的最小特征空间上的投影来确定第k个感测位置。

Conclusion

线性逆问题的传感器布置是一个有趣但具有挑战性的组合问题。最优解可以通过穷举搜索和分枝定界方法[9]、[10]来求解,但由于计算成本极高,特别是对于一些大规模问题,这两种方法都是不切实际的。因此,在过去的十年里,许多工作都集中在通过计算高效的算法找到有效的次优解决方案上。
据我们所知,所提出的MPME算法在计算上是最有效的传感器放置算法之一。
我们提出的MNEP和MPME算法逐一选择传感位置。通过这种方式,可以容易地确定所需传感器节点的最小数量。与许多流行的方法不同,当传感器节点的数量很小时,甚至接近估计向量的维数时,MNEP和MPME可以保证对偶观测矩阵得到良好的条件。
证明了满足WCEV要求的充要条件是所有选定的观测向量在 R n \mathcal R^n Rn的任何非平凡子空间上的投影的平方和足够大。所提出的MPME算法通过最大化其观测向量到所有选定观测向量的投影的平方和最小的子空间上的投影来确定每个感测位置。
我们进行蒙特卡罗模拟,将MNEP和MPME算法与凸松弛方法[1]、SparSenSe[2]和FrameSense[3]进行比较。基于仿真结果,我们得出结论,在五种方法中:
•为了满足精度要求,MPME的解决方案需要最少的传感器节点;
•MPME算法提供了最小WCEV或最小MSE意义上的最佳解决方案,尤其是当使用的传感器节点数量较少时;
•当可用传感器节点的数量非常有限时,MNEP和MPME可以很好地工作,而现有技术不能;
•对于一般情况,没有局部优化的MPME的解决方案甚至比具有局部优化的现有技术的解决方案更好。
为了鼓励未来的工作,我们提供了本文中使用的所有Matlab代码,这些代码可以从IEEE Xplore或github存储库https://github.com/CJiang01/SensorPlacement.git.

启发或得失

  1. 本质最小化最大特征值问题
  2. 凸优化、SparSenSe、FrameSense
  3. github存储库。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值