【文献阅读】

Title

Sensor placement minimizing the state estimation mean square error:Performance guarantees of greedy solutions

Autor information

引用格式:Kohara, Akira, et al. “Sensor placement minimizing the state estimation mean square error: Performance guarantees of greedy solutions.” 2020 59th IEEE Conference on Decision and Control (CDC). IEEE, 2020.pdf链接

Full text

Abtract

本文研究了选择系统输出的一个子集以最小化状态估计均方误差 (MSE)。 这导致了在受基数约束约束的可能传感器选择上定义的集合函数的最大化问题。 我们考虑通过贪心搜索来近似解决它。 由于 MSE 函数既不是子模也不是超模,贪心解的众所周知的性能保证在本例中不成立。 因此,我们使用量(子模比和曲率)来评估目标函数的子模性和超模性程度。 通过使用 MSE 函数的属性,我们可以近似地计算这些数量并推导出贪婪解决方案的性能保证。 结果表明,保证比现有结果中的保证更保守

Introduction

本文涉及传感器的放置问题。我们的目标是在给定(整数)个传感器的情况下使状态估计误差最小化。众所周知,这个问题被建模为集合函数的最大化,并且通常是NP-hard的(例如,参见[4]–[7])。因此,许多研究试图近似地解决这个问题。
主要方法之一是采用连续松弛,并将问题简化为凸优化,如[8]所示。
另一种方法是使用贪婪算法[6],[9]-[13]:逐个选取目标函数增量最大的传感器,直到所选传感器的数量达到上限。除了实现简单之外,算法的一个著名特征是性能保证。当目标函数是子模[9]-[11]时,贪婪解的函数的最优值和值之间的比率在理论上是有保证的[14]。
然而,非子模函数类包含一个重要的函数;状态估计均方误差(MSE)。一些论文已经讨论了MSE[12]、[13]、[15]1最小化中的性能保证。
作者使用quantities来评估MSE离亚模有多远:Summers和Kamgarpour[15]使用了亚模比[17]和曲率[18],[19],而Chamon等人[12],[13]应用了近似亚模的概念[20],在[21]中称为a-模。
在本文中,我们还使用状态估计MSE作为目标函数。我们解决了平滑问题:给定一段时间内的一组输出,估计该时间段内的状态。这个问题的MSE是根据[15]中的子模比和曲率来评估的。我们表明,通过对数量进行不那么保守的评估,我们获得了比现有工作中更严格的贪婪算法保证。

Methods

通过最小化均方误差(MSE)( J ( S ) J(S) J(S))选择系统输出的子集(组合优化的暴力搜索是NP-complete问题),等价于最大化受基数约束的在可能传感器选择上定义的集合函数的最大化问题( − J ( S ) + J ( ∅ ) -J(S)+J(\emptyset) J(S)+J())。在使用贪心搜索解决最大化集合时,由于MSE函数既不是子模函数(submodularity)也不是超模函数(supmodularity),贪心解的性能保证不成立。
f ( S g r e e d y ) − f ( ∅ ) ≥ ( 1 − e − 1 ) ( f ( S ∗ ) − f ( ∅ ) (1) f(S^{greedy})-f(\emptyset)\ge(1-e^{-1})(f(S^*)-f(\emptyset) \tag{1} f(Sgreedy)f()(1e1)(f(S)f()(1)
作者使用子模比和曲率评估 J ( S ) J(S) J(S)的子模性和超模性。则利用贪心法求解时性能指标为:
f ( S g r e e d y ) − f ( ∅ ) ≥ 1 α ( 1 − e − α γ ) ( f ( S ∗ ) − f ( ∅ ) (2) f(S^{greedy})-f(\emptyset)\ge\frac{1}{\alpha}(1-e^{-{\alpha }{\gamma}})(f(S^*)-f(\emptyset) \tag{2} f(Sgreedy)f()α1(1eαγ)(f(S)f()(2)
α ∈ [ 0 , 1 ] \alpha\in[0,1] α[0,1], γ ∈ [ 0 , 1 ] \gamma\in[0,1] γ[0,1]
并给出了 α \alpha α γ \gamma γ的估计替代值, α ‾ \underline{\alpha} α γ ‾ \underline{\gamma} γ。并证明了:
f ( S g r e e d y ) − f ( ∅ ) ≥ 1 α ( 1 − e − α γ ) ( f ( S ∗ ) − f ( ∅ ) ≥ 1 α ‾ ( 1 − e − α ‾ γ ‾ ) ( f ( S ∗ ) − f ( ∅ ) f(S^{greedy})-f(\emptyset)\ge\frac{1}{\alpha}(1-e^{-{\alpha }{\gamma}})(f(S^*)-f(\emptyset) \ge\frac{1}{\underline{\alpha}}(1-e^{-{\underline{\alpha }}{\underline{\gamma}}})(f(S^*)-f(\emptyset) f(Sgreedy)f()α1(1eαγ)(f(S)f()α1(1eαγ)(f(S)f()

submodularity

子模块性是集合函数的一个属性,它体现了收益递减的概念。如果将一个元素添加到较小的集合比将相同的元素添加到较大的集合产生更大的边际增益,则称集合函数是子模函数。 形式上,集合函数 f : 2 V − > R f: 2^V -> R f:2V>R是子模的,如果对于 V V V 的任何子集 A A A B B B,且 A ⊆ B A\subseteq B AB满足以下条件:
f ( A ∪ x ) − f ( A ) ≥ f ( B ∪ x ) − f ( B ) 对于所有  x ∈ V /   A 。 f(A \cup {x}) - f(A) ≥ f(B \cup {x}) - f(B) \text{对于所有 $x ∈ V/ \ A$}。 f(Ax)f(A)f(Bx)f(B)对于所有 xV/ A
简单来说,这意味着将元素添加到较小子集的边际收益大于或等于将相同元素添加到较大子集的边际收益。 子模块化是机器学习、运筹学和经济学等各个领域的有用属性。例如,在机器学习中,子模函数用于优化问题,以从更大的集合中选择多样化且具有代表性的数据点子集

Experienment

作者将贪心法用于最大化子集选择的集合函数,证明在有效的区间内,非子模函数的贪心解比子模函数的贪心解拥有更高的准确率( ≥ ( 1 − e − 1 ) ) \ge(1-e^{-1})) (1e1)),而且也比其它方法拥有更高的下界。

Conclusion

导出最小化MSE函数的下界,给出贪心法求解的性能保证,而且超过了经典的界 ( 1 − e − 1 ) (1-e^{-1}) (1e1)

启发

  1. submodularity
  2. MSE最小化问题转化为集合函数的最大化
  3. non-submodularity 的贪心法下界。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值