【学术】重构具有时间延迟相互作用的动力学网络

Reconstruction of dynamic networks with time-delayed interactions in presence of fast-varying noises

Zhaoyang ZhangYang ChenYuanyuan MiGang Hu
Ningbo University中科院脑网中心和国家模式识别实验室Chongqing UniversityBeijing Normal University

Dated: April 1, 2019

理论推导

考虑 N N N个节点的动力学系统
x ˙ i = F i [ x i ( t ) ] + ∑ j = 1 , j ≠ i N Φ i j [ x i ( t ) , x j ( t − τ i j ) ] + η i ( t ) + Γ i ( t ) , i = 1 , 2 , . . . , N \dot{x}_i=F_i[x_i(t)]+\sum_{j=1,j\neq i}^N\Phi_{ij}[x_i(t),x_j(t-\tau_{ij})]+\eta_i(t)+\Gamma_i(t),i=1,2,...,N x˙i=Fi[xi(t)]+j=1,j̸=iNΦij[xi(t),xj(tτij)]+ηi(t)+Γi(t),i=1,2,...,N

其中 η i ( t ) \eta_i(t) ηi(t)为色噪声, Γ i ( t ) \Gamma_i(t) Γi(t)为白噪声,满足
&lt; η i ( t ) &gt; = 0 , &lt; η i ( t ) η i ( t + t ′ ) &gt; = P i j e − ∣ t ′ ∣ τ C &lt;\eta_i(t)&gt;=0,&lt;\eta_i(t)\eta_i(t+t&#x27;)&gt;=P_{ij}e^{-\frac{|t&#x27;|}{\tau_C}} <ηi(t)>=0,<ηi(t)ηi(t+t)>=PijeτCt

&lt; Γ i ( t ) &gt; = 0 , &lt; Γ i ( t ) Γ i ( t + t ′ ) &gt; = Q i δ i j δ ( t ′ ) &lt;\Gamma_i(t)&gt;=0,&lt;\Gamma_i(t)\Gamma_i(t+t&#x27;)&gt;=Q_i\delta_{ij}\delta(t&#x27;) <Γi(t)>=0,<Γi(t)Γi(t+t)>=Qiδijδ(t)

&lt; Γ i ( t ) η j ( t ) &gt; = 0 &lt;\Gamma_i(t)\eta_j(t)&gt;=0 <Γi(t)ηj(t)>=0

F i F_i Fi Φ i j \Phi_{ij} Φij可以为线性或者非线性。需要设计算法,从数据中重构出网络连接。假设在整个网络中我们只能够测量两个节点 A A A B B B,并且有充足的数据。
x A ( t ) = [ x A ( t 1 ) , x A ( t 2 ) . . . . , x A ( t k ) , . . . , x A ( t L ) ] x_A(t)=[x_A(t_1),x_A(t_2)....,x_A(t_k),...,x_A(t_L)] xA(t)=[xA(t1),xA(t2)....,xA(tk),...,xA(tL)]

x B ( t ) = [ x B t 1 ) , x B ( t 2 ) . . . . , x B ( t k ) , . . . , x B ( t L ) ] x_B(t)=[x_Bt_1),x_B(t_2)....,x_B(t_k),...,x_B(t_L)] xB(t)=[xBt1),xB(t2)....,xB(tk),...,xB(tL)]

0 &lt; Δ t = t k + 1 − t k ≪ 1 , L ≫ 1 0&lt;\Delta t=t_{k+1}-t_k\ll 1,L\gg 1 0<Δt=tk+1tk1,L1

x i ( t ) x_i(t) xi(t)求时间的二阶段导可得
x ¨ i ( t ) = ∂ F i [ x i ( t ) ] ∂ x i ( t ) x ˙ i ( t ) + ∑ j = 1 , j ≠ i N ∂ Φ i j [ x i ( t ) , x j ( t − τ i j ) ] ∂ x i ( t ) x ˙ i ( t ) + ∑ j = 1 , j ≠ i N ∂ Φ i j [ x i ( t ) , x j ( t − τ i j ) ] ∂ x j ( t − τ i j ) x ˙ j ( t − τ i j ) + η ˙ i ( t ) + Γ ˙ i ( t ) \ddot{x}_i(t)=\frac{\partial F_i[x_i(t)]}{\partial x_i(t)}\dot{x}_i(t)+\sum_{j=1,j\neq i}^N\frac{\partial\Phi_{ij}[x_i(t),x_j(t-\tau_{ij})]}{\partial x_i(t)}\dot{x}_i(t)+\sum_{j=1,j\neq i}^N\frac{\partial\Phi_{ij}[x_i(t),x_j(t-\tau_{ij})]}{\partial x_j(t-\tau_{ij})}\dot{x}_j(t-\tau_{ij})+\dot{\eta}_i(t)+\dot{\Gamma}_i(t) x¨i(t)=xi(t)Fi[xi(t)]x˙i(t)+j=1,j̸=iNxi(t)Φij[xi(t),xj(tτij)]x˙i(t)+j=1,j̸=iNxj(tτij)Φij[xi(t),xj(tτij)]x˙j(tτij)+η˙i(t)+Γ˙i(t)

其中高阶导数可以使用前向差分进行计算
x ˙ i ( t k ) = x i ( t k + 1 ) − x i ( t k ) Δ t , x ¨ i ( t k ) = x ˙ i ( t k + 1 ) − x ˙ i ( t k ) Δ t \dot{x}_i(t_k)=\frac{x_i(t_{k+1})-x_i(t_{k})}{\Delta t},\ddot{x}_i(t_k)=\frac{\dot{x}_i(t_{k+1})-\dot{x}_i(t_{k})}{\Delta t} x˙i(tk)=Δtxi(tk+1)xi(tk),x¨i(tk)=Δtx˙i(tk+1)x˙i(tk)

噪声的导数被定义为
η ˙ i ( t k ) = η i ( t k + 1 ) − η i ( t k ) Δ t , Γ ˙ i ( t k ) = Γ i ( t k + 1 ) − Γ i ( t k ) Δ t \dot{\eta}_i(t_k)=\frac{\eta_i(t_{k+1})-\eta_i(t_{k})}{\Delta t},\dot{\Gamma}_i(t_k)=\frac{\Gamma_i(t_{k+1})-\Gamma_i(t_{k})}{\Delta t} η˙i(tk)=Δtηi(tk+1)ηi(tk),Γ˙i(tk)=ΔtΓi(tk+1)Γi(tk)

根据前面的公式可知
x ¨ A ( t k ) = 1 2 ∂ F A [ x A ( t k ) ] ∂ x i ( t k ) [ x ˙ A ( t k ) + x ˙ A ( t k + 1 ) ] + 1 2 ∑ j = 1 , j ≠ A N ∂ Φ A j [ x A ( t ) , x j ( t k − τ A j ) ] ∂ x A ( t k ) [ x ˙ A ( t k ) + x ˙ A ( t k + 1 ) ] + 1 2 ∑ j = 1 , j ≠ A N ∂ Φ A j [ x i ( t ) , x j ( t − τ A j ) ] ∂ x j ( t − τ A j ) [ x ˙ j ( t k − τ A j ) + x ˙ j ( t k + 1 ) ] + η A ( t k + 1 − τ A j ) − η A ( t k ) Δ t + Γ A ( t k + 1 ) − Γ A ( t k ) Δ t \ddot{x}_A(t_k)=\frac{1}{2}\frac{\partial F_A[x_A(t_k)]}{\partial x_i(t_k)}[\dot{x}_A(t_k) +\dot{x}_A(t_{k+1})]+\frac{1}{2}\sum_{j=1,j\neq A}^N\frac{\partial\Phi_{Aj}[x_A(t),x_j(t_k-\tau_{Aj})]}{\partial x_A(t_k)}[\dot{x}_A(t_k)+\dot{x}_A(t_{k+1})] +\frac{1}{2}\sum_{j=1,j\neq A}^N\frac{\partial\Phi_{Aj}[x_i(t),x_j(t-\tau_{Aj})]}{\partial x_j(t-\tau_{Aj})}[\dot{x}_j(t_k-\tau_{Aj})+\dot{x}_j(t_{k+1})] +\frac{\eta_A(t_{k+1-\tau_{Aj}})-\eta_A(t_{k})}{\Delta t} +\frac{\Gamma_A(t_{k+1})-\Gamma_A(t_{k})}{\Delta t} x¨A(tk)=21xi(tk)FA[xA(tk)][x˙A(tk)+x˙A(tk+1)]+21j=1,j̸=ANxA(tk)ΦAj[xA(t),xj(tkτAj)][x˙A(tk)+x˙A(tk+1)]+21j=1,j̸=ANxj(tτAj)ΦAj[xi(t),xj(tτAj)][x˙j(tkτAj)+x˙j(tk+1)]+ΔtηA(tk+1τAj)ηA(tk)+ΔtΓA(tk+1)ΓA(tk)

然后对方程左右两边同乘 x B ( t k + Δ t ) x_B(t_k+\Delta t) xB(tk+Δt),计算每项的关联可得
R A B = &lt; x ¨ A ( t k ) x B ( t k + Δ t ) &gt; R_{AB}=&lt;\ddot{x}_A(t_k)x_B(t_k+\Delta t)&gt; RAB=<x¨A(tk)xB(tk+Δt)>

= &lt; 1 2 ∂ F A [ x A ( t k ) ] ∂ x i ( t k ) [ x ˙ A ( t k ) x B ( t k + Δ t ) + x ˙ A ( t k + 1 x B ( t k + Δ t ) ) ] &gt; =&lt;\frac{1}{2}\frac{\partial F_A[x_A(t_k)]}{\partial x_i(t_k)}[\dot{x}_A(t_k)x_B(t_k+\Delta t)+\dot{x}_A(t_{k+1}x_B(t_k+\Delta t))]&gt; =<21xi(tk)FA[xA(tk)][x˙A(tk)xB(tk+Δt)+x˙A(tk+1xB(tk+Δt))]>

+ 1 2 ∑ j = 1 , j ≠ A N ∂ Φ A j [ x A ( t ) , x j ( t k − τ A j ) ] ∂ x A ( t k ) [ x ˙ A ( t k ) x B ( t k + Δ t ) + x ˙ A ( t k + 1 ) x B ( t k + Δ t ) ] +\frac{1}{2}\sum_{j=1,j\neq A}^N\frac{\partial\Phi_{Aj}[x_A(t),x_j(t_k-\tau_{Aj})]}{\partial x_A(t_k)}[\dot{x}_A(t_k)x_B(t_k+\Delta t)+\dot{x}_A(t_{k+1})x_B(t_k+\Delta t)] +21j=1,j̸=ANxA(tk)ΦAj[xA(t),xj(tkτAj)][x˙A(tk)xB(tk+Δt)+x˙A(tk+1)xB(tk+Δt)]

+ 1 2 ∑ j = 1 , j ≠ A N ∂ Φ A j [ x i ( t ) , x j ( t − τ A j ) ] ∂ x j ( t − τ A j ) [ x ˙ j ( t k − τ A j ) x B ( t k + Δ t ) ) + x ˙ j ( t k + 1 ) x B ( t k + Δ t ) ) ] +\frac{1}{2}\sum_{j=1,j\neq A}^N\frac{\partial\Phi_{Aj}[x_i(t),x_j(t-\tau_{Aj})]}{\partial x_j(t-\tau_{Aj})}[\dot{x}_j(t_k-\tau_{Aj})x_B(t_k+\Delta t))+\dot{x}_j(t_{k+1})x_B(t_k+\Delta t))] +21j=1,j̸=ANxj(tτAj)ΦAj[xi(t),xj(tτAj)][x˙j(tkτAj)xB(tk+Δt))+x˙j(tk+1)xB(tk+Δt))]

+ η A ( t k + 1 − τ A j ) x B ( t k + Δ t ) − η A ( t k ) x B ( t k + Δ t ) Δ t + Γ A ( t k + 1 ) x B ( t k + Δ t ) − Γ A ( t k ) x B ( t k + Δ t ) Δ t +\frac{\eta_A(t_{k+1-\tau_{Aj}})x_B(t_k+\Delta t)-\eta_A(t_{k})x_B(t_k+\Delta t)}{\Delta t}+\frac{\Gamma_A(t_{k+1})x_B(t_k+\Delta t)-\Gamma_A(t_{k})x_B(t_k+\Delta t)}{\Delta t} +ΔtηA(tk+1τAj)xB(tk+Δt)ηA(tk)xB(tk+Δt)+ΔtΓA(tk+1)xB(tk+Δt)ΓA(tk)xB(tk+Δt)

记该公式为方程1。因为有白噪声的存在,对 &lt; x ˙ i ( t ) x ˙ j ( t + t ′ ) &gt; &lt;\dot{x}_i(t)\dot{x}_j(t+t&#x27;)&gt; <x˙i(t)x˙j(t+t)>积分在 t ′ = 0 t&#x27;=0 t=0处有个阶跃,所以
&lt; x ˙ i ( t ) x j ( t + Δ t ) &gt; − &lt; x ˙ i ( t ) x j ( t ) &gt; = Q j δ i j &lt;\dot{x}_i(t)x_j(t+\Delta t)&gt;-&lt;\dot{x}_i(t)x_j(t)&gt;=Q_j\delta_{ij} <x˙i(t)xj(t+Δt)><x˙i(t)xj(t)>=Qjδij

定义 n A B = τ A B Δ t n_{AB}=\frac{\tau_{AB}}{\Delta t} nAB=ΔtτAB V i ( Δ k ) = &lt; x ˙ i ( t k ) x i ( t k + Δ k ) &gt; V_i(\Delta k)=&lt;\dot{x}_i(t_k)x_i(t_{k+\Delta k})&gt; Vi(Δk)=<x˙i(tk)xi(tk+Δk)>,在 Δ k = 0 \Delta k=0 Δk=0 Δ k = 1 \Delta k=1 Δk=1处有
V i ( 1 ) − V i ( 0 ) = Q i V_i(1)-V_i(0)=Q_i Vi(1)Vi(0)=Qi

由于 &lt; x ˙ B ( t k − τ A B ) x B ( t k + Δ k ) &gt; &lt;\dot{x}_B(t_k-\tau_{AB})x_B(t_{k+\Delta k})&gt; <x˙B(tkτAB)xB(tk+Δk)> &lt; x ˙ B ( t k + 1 − τ A B ) x B ( t k + Δ k ) &gt; &lt;\dot{x}_B(t_{k+1}-\tau_{AB})x_B(t_{k+\Delta k})&gt; <x˙B(tk+1τAB)xB(tk+Δk)> k = − n A B k=-n_{AB} k=nAB处不联系,可以得到 n A B n_{AB} nAB τ A B \tau_{AB} τAB
根据 &lt; x ˙ i ( t ) x j ( t + Δ t ) &gt; − &lt; x ˙ i ( t ) x j ( t ) &gt; = Q j δ i j &lt;\dot{x}_i(t)x_j(t+\Delta t)&gt;-&lt;\dot{x}_i(t)x_j(t)&gt;=Q_j\delta_{ij} <x˙i(t)xj(t+Δt)><x˙i(t)xj(t)>=Qjδij的性质可知方程1右边除了 &lt; x ˙ B ( t k − τ A B ) x B ( t k + Δ k ) &gt; &lt;\dot{x}_B(t_k-\tau_{AB})x_B(t_{k+\Delta k})&gt; <x˙B(tkτAB)xB(tk+Δk)> &lt; x ˙ B ( t k + 1 − τ A B ) x B ( t k + Δ k ) &gt; &lt;\dot{x}_B(t_{k+1}-\tau_{AB})x_B(t_{k+\Delta k})&gt; <x˙B(tk+1τAB)xB(tk+Δk)>没有不连续的项,所以从方程1可以得到
D A B = R A B ( − n A B + 2 ) − R A B ( − n A B ) = &lt; x ¨ A ( t k ) x B ( t t k − n A B + 2 ) &gt; − &lt; x ¨ A ( t k ) x B ( t t k − n A B ) &gt; D_{AB}=R_{AB}(-n_{AB}+2)-R_{AB}(-n_{AB})=&lt;\ddot{x}_A(t_k)x_B(t_{t_k-n_{AB}+2})&gt;-&lt;\ddot{x}_A(t_k)x_B(t_{t_k-n_{AB}})&gt; DAB=RAB(nAB+2)RAB(nAB)=<x¨A(tk)xB(ttknAB+2)><x¨A(tk)xB(ttknAB)>

= &lt; ∂ Φ A j [ x i ( t ) , x j ( t − τ A j ) ] ∂ x B ( t − τ A B ) &gt; Q B =&lt;\frac{\partial\Phi_{Aj}[x_i(t),x_j(t-\tau_{Aj})]}{\partial x_B(t-\tau_{AB})}&gt;Q_B =<xB(tτAB)ΦAj[xi(t),xj(tτAj)]>QB

定义 M A B = &lt; ∂ Φ A j [ x i ( t ) , x j ( t − τ A j ) ] ∂ x B ( t − τ A B ) &gt; M_{AB}=&lt;\frac{\partial\Phi_{Aj}[x_i(t),x_j(t-\tau_{Aj})]}{\partial x_B(t-\tau_{AB})}&gt; MAB=<xB(tτAB)ΦAj[xi(t),xj(tτAj)]>,可得
M A B = D A B Q B = J A B M_{AB}=\frac{D_{AB}}{Q_B}=J_{AB} MAB=QBDAB=JAB

数值仿真

定义均方根误差 E E E作为衡量 M A B M_{AB} MAB J A B J_{AB} JAB之间的误差, T T T表示测量时长
对于线性系统:
在这里插入图片描述
对于扩散耦合的FHN网络(上),和Rossler网络(下)
在这里插入图片描述
对于基因调控网络
在这里插入图片描述

总结

文章的核心亮点是重构有时滞作用的系统,trick是利用白噪声的性质。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值