【学术】重构具有时间延迟相互作用的动力学网络

Reconstruction of dynamic networks with time-delayed interactions in presence of fast-varying noises

Zhaoyang Zhang Yang Chen Yuanyuan Mi Gang Hu
Ningbo University 中科院脑网中心和国家模式识别实验室 Chongqing University Beijing Normal University

Dated: April 1, 2019

理论推导

考虑 N N N个节点的动力学系统
x ˙ i = F i [ x i ( t ) ] + ∑ j = 1 , j ≠ i N Φ i j [ x i ( t ) , x j ( t − τ i j ) ] + η i ( t ) + Γ i ( t ) , i = 1 , 2 , . . . , N \dot{x}_i=F_i[x_i(t)]+\sum_{j=1,j\neq i}^N\Phi_{ij}[x_i(t),x_j(t-\tau_{ij})]+\eta_i(t)+\Gamma_i(t),i=1,2,...,N x˙i=Fi[xi(t)]+j=1,j̸=iNΦij[xi(t),xj(tτij)]+ηi(t)+Γi(t),i=1,2,...,N

其中 η i ( t ) \eta_i(t) ηi(t)为色噪声, Γ i ( t ) \Gamma_i(t) Γi(t)为白噪声,满足
&lt; η i ( t ) &gt; = 0 , &lt; η i ( t ) η i ( t + t ′ ) &gt; = P i j e − ∣ t ′ ∣ τ C &lt;\eta_i(t)&gt;=0,&lt;\eta_i(t)\eta_i(t+t&#x27;)&gt;=P_{ij}e^{-\frac{|t&#x27;|}{\tau_C}} <ηi(t)>=0,<ηi(t)ηi(t+t)>=PijeτCt

&lt; Γ i ( t ) &gt; = 0 , &lt; Γ i ( t ) Γ i ( t + t ′ ) &gt; = Q i δ i j δ ( t ′ ) &lt;\Gamma_i(t)&gt;=0,&lt;\Gamma_i(t)\Gamma_i(t+t&#x27;)&gt;=Q_i\delta_{ij}\delta(t&#x27;) <Γi(t)>=0,<Γi(t)Γi(t+t)>=Qiδijδ(t)

&lt; Γ i ( t ) η j ( t ) &gt; = 0 &lt;\Gamma_i(t)\eta_j(t)&gt;=0 <Γi(t)ηj(t)>=0

F i F_i Fi Φ i j \Phi_{ij} Φij可以为线性或者非线性。需要设计算法,从数据中重构出网络连接。假设在整个网络中我们只能够测量两个节点 A A A B B B,并且有充足的数据。
x A ( t ) = [ x A ( t 1 ) , x A ( t 2 ) . . . . , x A ( t k ) , . . . , x A ( t L ) ] x_A(t)=[x_A(t_1),x_A(t_2)....,x_A(t_k),...,x_A(t_L)] xA(t)=[xA(t1),xA(t2)....,xA(tk),...,xA(tL)]

x B ( t ) = [ x B t 1 ) , x B ( t 2 ) . . . . , x B ( t k ) , . . . , x B ( t L ) ] x_B(t)=[x_Bt_1),x_B(t_2)....,x_B(t_k),...,x_B(t_L)] xB(t)=[xBt1),xB(t2)....,xB(tk),...,xB(tL)]

0 &lt; Δ t = t k + 1 − t k ≪ 1 , L ≫ 1 0&lt;\Delta t=t_{k+1}-t_k\ll 1,L\gg 1 0<Δt=tk+1tk1,L1

x i ( t ) x_i(t) xi(t)求时间的二阶段导可得
x ¨ i ( t ) = ∂ F i [ x i ( t ) ] ∂ x i ( t ) x ˙ i ( t ) + ∑ j = 1 , j ≠ i N ∂ Φ i j [ x i ( t ) , x j ( t − τ i j ) ] ∂ x i ( t ) x ˙ i ( t ) + ∑ j = 1 , j ≠ i N ∂ Φ i j [ x i ( t ) , x j ( t − τ i j ) ] ∂ x j ( t − τ i j ) x ˙ j ( t − τ i j ) + η ˙ i ( t ) + Γ ˙ i ( t ) \ddot{x}_i(t)=\frac{\partial F_i[x_i(t)]}{\partial x_i(t)}\dot{x}_i(t)+\sum_{j=1,j\neq i}^N\frac{\partial\Phi_{ij}[x_i(t),x_j(t-\tau_{ij})]}{\partial x_i(t)}\dot{x}_i(t)+\sum_{j=1,j\neq i}^N\frac{\partial\Phi_{ij}[x_i(t),x_j(t-\tau_{ij})]}{\partial x_j(t-\tau_{ij})}\dot{x}_j(t-\tau_{ij})+\dot{\eta}_i(t)+\dot{\Gamma}_i(t) x¨i(t)=xi(t)Fi[xi(t)]x˙

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值