Reconstruction of dynamic networks with time-delayed interactions in presence of fast-varying noises
Zhaoyang Zhang | Yang Chen | Yuanyuan Mi | Gang Hu |
---|---|---|---|
Ningbo University | 中科院脑网中心和国家模式识别实验室 | Chongqing University | Beijing Normal University |
Dated: April 1, 2019
目录
理论推导
考虑
N
N
N个节点的动力学系统
x
˙
i
=
F
i
[
x
i
(
t
)
]
+
∑
j
=
1
,
j
≠
i
N
Φ
i
j
[
x
i
(
t
)
,
x
j
(
t
−
τ
i
j
)
]
+
η
i
(
t
)
+
Γ
i
(
t
)
,
i
=
1
,
2
,
.
.
.
,
N
\dot{x}_i=F_i[x_i(t)]+\sum_{j=1,j\neq i}^N\Phi_{ij}[x_i(t),x_j(t-\tau_{ij})]+\eta_i(t)+\Gamma_i(t),i=1,2,...,N
x˙i=Fi[xi(t)]+j=1,j̸=i∑NΦij[xi(t),xj(t−τij)]+ηi(t)+Γi(t),i=1,2,...,N
其中
η
i
(
t
)
\eta_i(t)
ηi(t)为色噪声,
Γ
i
(
t
)
\Gamma_i(t)
Γi(t)为白噪声,满足
<
η
i
(
t
)
>
=
0
,
<
η
i
(
t
)
η
i
(
t
+
t
′
)
>
=
P
i
j
e
−
∣
t
′
∣
τ
C
<\eta_i(t)>=0,<\eta_i(t)\eta_i(t+t')>=P_{ij}e^{-\frac{|t'|}{\tau_C}}
<ηi(t)>=0,<ηi(t)ηi(t+t′)>=Pije−τC∣t′∣
< Γ i ( t ) > = 0 , < Γ i ( t ) Γ i ( t + t ′ ) > = Q i δ i j δ ( t ′ ) <\Gamma_i(t)>=0,<\Gamma_i(t)\Gamma_i(t+t')>=Q_i\delta_{ij}\delta(t') <Γi(t)>=0,<Γi(t)Γi(t+t′)>=Qiδijδ(t′)
< Γ i ( t ) η j ( t ) > = 0 <\Gamma_i(t)\eta_j(t)>=0 <Γi(t)ηj(t)>=0
F
i
F_i
Fi和
Φ
i
j
\Phi_{ij}
Φij可以为线性或者非线性。需要设计算法,从数据中重构出网络连接。假设在整个网络中我们只能够测量两个节点
A
A
A和
B
B
B,并且有充足的数据。
x
A
(
t
)
=
[
x
A
(
t
1
)
,
x
A
(
t
2
)
.
.
.
.
,
x
A
(
t
k
)
,
.
.
.
,
x
A
(
t
L
)
]
x_A(t)=[x_A(t_1),x_A(t_2)....,x_A(t_k),...,x_A(t_L)]
xA(t)=[xA(t1),xA(t2)....,xA(tk),...,xA(tL)]
x B ( t ) = [ x B t 1 ) , x B ( t 2 ) . . . . , x B ( t k ) , . . . , x B ( t L ) ] x_B(t)=[x_Bt_1),x_B(t_2)....,x_B(t_k),...,x_B(t_L)] xB(t)=[xBt1),xB(t2)....,xB(tk),...,xB(tL)]
0 < Δ t = t k + 1 − t k ≪ 1 , L ≫ 1 0<\Delta t=t_{k+1}-t_k\ll 1,L\gg 1 0<Δt=tk+1−tk≪1,L≫1
对
x
i
(
t
)
x_i(t)
xi(t)求时间的二阶段导可得
x
¨
i
(
t
)
=
∂
F
i
[
x
i
(
t
)
]
∂
x
i
(
t
)
x
˙
i
(
t
)
+
∑
j
=
1
,
j
≠
i
N
∂
Φ
i
j
[
x
i
(
t
)
,
x
j
(
t
−
τ
i
j
)
]
∂
x
i
(
t
)
x
˙
i
(
t
)
+
∑
j
=
1
,
j
≠
i
N
∂
Φ
i
j
[
x
i
(
t
)
,
x
j
(
t
−
τ
i
j
)
]
∂
x
j
(
t
−
τ
i
j
)
x
˙
j
(
t
−
τ
i
j
)
+
η
˙
i
(
t
)
+
Γ
˙
i
(
t
)
\ddot{x}_i(t)=\frac{\partial F_i[x_i(t)]}{\partial x_i(t)}\dot{x}_i(t)+\sum_{j=1,j\neq i}^N\frac{\partial\Phi_{ij}[x_i(t),x_j(t-\tau_{ij})]}{\partial x_i(t)}\dot{x}_i(t)+\sum_{j=1,j\neq i}^N\frac{\partial\Phi_{ij}[x_i(t),x_j(t-\tau_{ij})]}{\partial x_j(t-\tau_{ij})}\dot{x}_j(t-\tau_{ij})+\dot{\eta}_i(t)+\dot{\Gamma}_i(t)
x¨i(t)=∂xi(t)∂Fi[xi(t)]x˙i(t)+j=1,j̸=i∑N∂xi(t)∂Φij[xi(t),xj(t−τij)]x˙i(t)+j=1,j̸=i∑N∂xj(t−τij)∂Φij[xi(t),xj(t−τij)]x˙j(t−τij)+η˙i(t)+Γ˙i(t)
其中高阶导数可以使用前向差分进行计算
x
˙
i
(
t
k
)
=
x
i
(
t
k
+
1
)
−
x
i
(
t
k
)
Δ
t
,
x
¨
i
(
t
k
)
=
x
˙
i
(
t
k
+
1
)
−
x
˙
i
(
t
k
)
Δ
t
\dot{x}_i(t_k)=\frac{x_i(t_{k+1})-x_i(t_{k})}{\Delta t},\ddot{x}_i(t_k)=\frac{\dot{x}_i(t_{k+1})-\dot{x}_i(t_{k})}{\Delta t}
x˙i(tk)=Δtxi(tk+1)−xi(tk),x¨i(tk)=Δtx˙i(tk+1)−x˙i(tk)
噪声的导数被定义为
η
˙
i
(
t
k
)
=
η
i
(
t
k
+
1
)
−
η
i
(
t
k
)
Δ
t
,
Γ
˙
i
(
t
k
)
=
Γ
i
(
t
k
+
1
)
−
Γ
i
(
t
k
)
Δ
t
\dot{\eta}_i(t_k)=\frac{\eta_i(t_{k+1})-\eta_i(t_{k})}{\Delta t},\dot{\Gamma}_i(t_k)=\frac{\Gamma_i(t_{k+1})-\Gamma_i(t_{k})}{\Delta t}
η˙i(tk)=Δtηi(tk+1)−ηi(tk),Γ˙i(tk)=ΔtΓi(tk+1)−Γi(tk)
根据前面的公式可知
x
¨
A
(
t
k
)
=
1
2
∂
F
A
[
x
A
(
t
k
)
]
∂
x
i
(
t
k
)
[
x
˙
A
(
t
k
)
+
x
˙
A
(
t
k
+
1
)
]
+
1
2
∑
j
=
1
,
j
≠
A
N
∂
Φ
A
j
[
x
A
(
t
)
,
x
j
(
t
k
−
τ
A
j
)
]
∂
x
A
(
t
k
)
[
x
˙
A
(
t
k
)
+
x
˙
A
(
t
k
+
1
)
]
+
1
2
∑
j
=
1
,
j
≠
A
N
∂
Φ
A
j
[
x
i
(
t
)
,
x
j
(
t
−
τ
A
j
)
]
∂
x
j
(
t
−
τ
A
j
)
[
x
˙
j
(
t
k
−
τ
A
j
)
+
x
˙
j
(
t
k
+
1
)
]
+
η
A
(
t
k
+
1
−
τ
A
j
)
−
η
A
(
t
k
)
Δ
t
+
Γ
A
(
t
k
+
1
)
−
Γ
A
(
t
k
)
Δ
t
\ddot{x}_A(t_k)=\frac{1}{2}\frac{\partial F_A[x_A(t_k)]}{\partial x_i(t_k)}[\dot{x}_A(t_k) +\dot{x}_A(t_{k+1})]+\frac{1}{2}\sum_{j=1,j\neq A}^N\frac{\partial\Phi_{Aj}[x_A(t),x_j(t_k-\tau_{Aj})]}{\partial x_A(t_k)}[\dot{x}_A(t_k)+\dot{x}_A(t_{k+1})] +\frac{1}{2}\sum_{j=1,j\neq A}^N\frac{\partial\Phi_{Aj}[x_i(t),x_j(t-\tau_{Aj})]}{\partial x_j(t-\tau_{Aj})}[\dot{x}_j(t_k-\tau_{Aj})+\dot{x}_j(t_{k+1})] +\frac{\eta_A(t_{k+1-\tau_{Aj}})-\eta_A(t_{k})}{\Delta t} +\frac{\Gamma_A(t_{k+1})-\Gamma_A(t_{k})}{\Delta t}
x¨A(tk)=21∂xi(tk)∂FA[xA(tk)][x˙A(tk)+x˙A(tk+1)]+21j=1,j̸=A∑N∂xA(tk)∂ΦAj[xA(t),xj(tk−τAj)][x˙A(tk)+x˙A(tk+1)]+21j=1,j̸=A∑N∂xj(t−τAj)∂ΦAj[xi(t),xj(t−τAj)][x˙j(tk−τAj)+x˙j(tk+1)]+ΔtηA(tk+1−τAj)−ηA(tk)+ΔtΓA(tk+1)−ΓA(tk)
然后对方程左右两边同乘
x
B
(
t
k
+
Δ
t
)
x_B(t_k+\Delta t)
xB(tk+Δt),计算每项的关联可得
R
A
B
=
<
x
¨
A
(
t
k
)
x
B
(
t
k
+
Δ
t
)
>
R_{AB}=<\ddot{x}_A(t_k)x_B(t_k+\Delta t)>
RAB=<x¨A(tk)xB(tk+Δt)>
= < 1 2 ∂ F A [ x A ( t k ) ] ∂ x i ( t k ) [ x ˙ A ( t k ) x B ( t k + Δ t ) + x ˙ A ( t k + 1 x B ( t k + Δ t ) ) ] > =<\frac{1}{2}\frac{\partial F_A[x_A(t_k)]}{\partial x_i(t_k)}[\dot{x}_A(t_k)x_B(t_k+\Delta t)+\dot{x}_A(t_{k+1}x_B(t_k+\Delta t))]> =<21∂xi(tk)∂FA[xA(tk)][x˙A(tk)xB(tk+Δt)+x˙A(tk+1xB(tk+Δt))]>
+ 1 2 ∑ j = 1 , j ≠ A N ∂ Φ A j [ x A ( t ) , x j ( t k − τ A j ) ] ∂ x A ( t k ) [ x ˙ A ( t k ) x B ( t k + Δ t ) + x ˙ A ( t k + 1 ) x B ( t k + Δ t ) ] +\frac{1}{2}\sum_{j=1,j\neq A}^N\frac{\partial\Phi_{Aj}[x_A(t),x_j(t_k-\tau_{Aj})]}{\partial x_A(t_k)}[\dot{x}_A(t_k)x_B(t_k+\Delta t)+\dot{x}_A(t_{k+1})x_B(t_k+\Delta t)] +21j=1,j̸=A∑N∂xA(tk)∂ΦAj[xA(t),xj(tk−τAj)][x˙A(tk)xB(tk+Δt)+x˙A(tk+1)xB(tk+Δt)]
+ 1 2 ∑ j = 1 , j ≠ A N ∂ Φ A j [ x i ( t ) , x j ( t − τ A j ) ] ∂ x j ( t − τ A j ) [ x ˙ j ( t k − τ A j ) x B ( t k + Δ t ) ) + x ˙ j ( t k + 1 ) x B ( t k + Δ t ) ) ] +\frac{1}{2}\sum_{j=1,j\neq A}^N\frac{\partial\Phi_{Aj}[x_i(t),x_j(t-\tau_{Aj})]}{\partial x_j(t-\tau_{Aj})}[\dot{x}_j(t_k-\tau_{Aj})x_B(t_k+\Delta t))+\dot{x}_j(t_{k+1})x_B(t_k+\Delta t))] +21j=1,j̸=A∑N∂xj(t−τAj)∂ΦAj[xi(t),xj(t−τAj)][x˙j(tk−τAj)xB(tk+Δt))+x˙j(tk+1)xB(tk+Δt))]
+ η A ( t k + 1 − τ A j ) x B ( t k + Δ t ) − η A ( t k ) x B ( t k + Δ t ) Δ t + Γ A ( t k + 1 ) x B ( t k + Δ t ) − Γ A ( t k ) x B ( t k + Δ t ) Δ t +\frac{\eta_A(t_{k+1-\tau_{Aj}})x_B(t_k+\Delta t)-\eta_A(t_{k})x_B(t_k+\Delta t)}{\Delta t}+\frac{\Gamma_A(t_{k+1})x_B(t_k+\Delta t)-\Gamma_A(t_{k})x_B(t_k+\Delta t)}{\Delta t} +ΔtηA(tk+1−τAj)xB(tk+Δt)−ηA(tk)xB(tk+Δt)+ΔtΓA(tk+1)xB(tk+Δt)−ΓA(tk)xB(tk+Δt)
记该公式为方程1。因为有白噪声的存在,对
<
x
˙
i
(
t
)
x
˙
j
(
t
+
t
′
)
>
<\dot{x}_i(t)\dot{x}_j(t+t')>
<x˙i(t)x˙j(t+t′)>积分在
t
′
=
0
t'=0
t′=0处有个阶跃,所以
<
x
˙
i
(
t
)
x
j
(
t
+
Δ
t
)
>
−
<
x
˙
i
(
t
)
x
j
(
t
)
>
=
Q
j
δ
i
j
<\dot{x}_i(t)x_j(t+\Delta t)>-<\dot{x}_i(t)x_j(t)>=Q_j\delta_{ij}
<x˙i(t)xj(t+Δt)>−<x˙i(t)xj(t)>=Qjδij
定义
n
A
B
=
τ
A
B
Δ
t
n_{AB}=\frac{\tau_{AB}}{\Delta t}
nAB=ΔtτAB,
V
i
(
Δ
k
)
=
<
x
˙
i
(
t
k
)
x
i
(
t
k
+
Δ
k
)
>
V_i(\Delta k)=<\dot{x}_i(t_k)x_i(t_{k+\Delta k})>
Vi(Δk)=<x˙i(tk)xi(tk+Δk)>,在
Δ
k
=
0
\Delta k=0
Δk=0到
Δ
k
=
1
\Delta k=1
Δk=1处有
V
i
(
1
)
−
V
i
(
0
)
=
Q
i
V_i(1)-V_i(0)=Q_i
Vi(1)−Vi(0)=Qi
由于
<
x
˙
B
(
t
k
−
τ
A
B
)
x
B
(
t
k
+
Δ
k
)
>
<\dot{x}_B(t_k-\tau_{AB})x_B(t_{k+\Delta k})>
<x˙B(tk−τAB)xB(tk+Δk)>和
<
x
˙
B
(
t
k
+
1
−
τ
A
B
)
x
B
(
t
k
+
Δ
k
)
>
<\dot{x}_B(t_{k+1}-\tau_{AB})x_B(t_{k+\Delta k})>
<x˙B(tk+1−τAB)xB(tk+Δk)>在
k
=
−
n
A
B
k=-n_{AB}
k=−nAB处不联系,可以得到
n
A
B
n_{AB}
nAB即
τ
A
B
\tau_{AB}
τAB
根据
<
x
˙
i
(
t
)
x
j
(
t
+
Δ
t
)
>
−
<
x
˙
i
(
t
)
x
j
(
t
)
>
=
Q
j
δ
i
j
<\dot{x}_i(t)x_j(t+\Delta t)>-<\dot{x}_i(t)x_j(t)>=Q_j\delta_{ij}
<x˙i(t)xj(t+Δt)>−<x˙i(t)xj(t)>=Qjδij的性质可知方程1右边除了
<
x
˙
B
(
t
k
−
τ
A
B
)
x
B
(
t
k
+
Δ
k
)
>
<\dot{x}_B(t_k-\tau_{AB})x_B(t_{k+\Delta k})>
<x˙B(tk−τAB)xB(tk+Δk)>和
<
x
˙
B
(
t
k
+
1
−
τ
A
B
)
x
B
(
t
k
+
Δ
k
)
>
<\dot{x}_B(t_{k+1}-\tau_{AB})x_B(t_{k+\Delta k})>
<x˙B(tk+1−τAB)xB(tk+Δk)>没有不连续的项,所以从方程1可以得到
D
A
B
=
R
A
B
(
−
n
A
B
+
2
)
−
R
A
B
(
−
n
A
B
)
=
<
x
¨
A
(
t
k
)
x
B
(
t
t
k
−
n
A
B
+
2
)
>
−
<
x
¨
A
(
t
k
)
x
B
(
t
t
k
−
n
A
B
)
>
D_{AB}=R_{AB}(-n_{AB}+2)-R_{AB}(-n_{AB})=<\ddot{x}_A(t_k)x_B(t_{t_k-n_{AB}+2})>-<\ddot{x}_A(t_k)x_B(t_{t_k-n_{AB}})>
DAB=RAB(−nAB+2)−RAB(−nAB)=<x¨A(tk)xB(ttk−nAB+2)>−<x¨A(tk)xB(ttk−nAB)>
= < ∂ Φ A j [ x i ( t ) , x j ( t − τ A j ) ] ∂ x B ( t − τ A B ) > Q B =<\frac{\partial\Phi_{Aj}[x_i(t),x_j(t-\tau_{Aj})]}{\partial x_B(t-\tau_{AB})}>Q_B =<∂xB(t−τAB)∂ΦAj[xi(t),xj(t−τAj)]>QB
定义
M
A
B
=
<
∂
Φ
A
j
[
x
i
(
t
)
,
x
j
(
t
−
τ
A
j
)
]
∂
x
B
(
t
−
τ
A
B
)
>
M_{AB}=<\frac{\partial\Phi_{Aj}[x_i(t),x_j(t-\tau_{Aj})]}{\partial x_B(t-\tau_{AB})}>
MAB=<∂xB(t−τAB)∂ΦAj[xi(t),xj(t−τAj)]>,可得
M
A
B
=
D
A
B
Q
B
=
J
A
B
M_{AB}=\frac{D_{AB}}{Q_B}=J_{AB}
MAB=QBDAB=JAB
数值仿真
定义均方根误差
E
E
E作为衡量
M
A
B
M_{AB}
MAB和
J
A
B
J_{AB}
JAB之间的误差,
T
T
T表示测量时长
对于线性系统:
对于扩散耦合的FHN网络(上),和Rossler网络(下)
对于基因调控网络
总结
文章的核心亮点是重构有时滞作用的系统,trick是利用白噪声的性质。