算法入门DP:钉子和小球

本文探讨了如何通过线性动态规划解决一个关于小球在三角木板上滚动,受钉子影响的概率问题。通过计算初始小球数量与钉子状态的最大公因数,简化概率表达。核心算法涉及转移方程和gcd计算,以求拔掉特定钉子后小球到达指定格子的概率。
摘要由CSDN通过智能技术生成

0x00 题目来源

钉子和小球

0x10 Tag

线性DP、gcd

0x20 题目描述

有一个三角形木板,竖直立放,上面钉着n(n+1)/2颗钉子,还有**(n+1)**个格子(当n=5时如图1)。每颗钉子和周围的钉子的距离都等于d,每个格子的宽度也都等于d,且除了最左端和最右端的格子外每个格子都正对着最下面一排钉子的间隙。
让一个直径略小于d的小球中心正对着最上面的钉子在板上自由滚落,小球每碰到一个钉子都可能落向左边或右边(概率各1/2),且球的中心还会正对着下一颗将要碰上的钉子。例如图2就是小球一条可能的路径。
我们知道小球落在第i个格子中的概率pi,其中i为格子的编号,从左至右依次为0,1,…,n。
现在的问题是计算拔掉某些钉子后,小球落在编号为m的格子中的概率 p m p_m pm。假定最下面一排钉子不会被拔掉。例如图3是某些钉子被拔掉后小球一条可能的路径。
在这里插入图片描述


0x30 思路与算法

由于题设中要求我们使用分数形式表示概率,我们不妨设一开始落下 2 n 2^n 2n个小球(保证在最下方格子中至少有1个小球),利用格子中小球个数与最初小球数量求最大公因数,进而约分,得到结果。

小球由于钉子的原因,下落时会落向两侧,如果我门假设钉子位置为 c [ i ] [ j ] c[i][j] c[i][j],则该处小球来自于 c [ i − 1 ] [ j − 1 ] c[i-1][j-1] c[i1][j1] c [ i − 1 ] [ j ] c[i-1][j] c[i1][j]的钉子(根据三角形的形状抽象出钉子坐标)。其中,钉子会平分源头的小球数,需要除以2。

题设要求我们删除部分钉子,则则该处小球可能来自于 c [ i − 2 ] [ j − 1 ] c[i-2][j-1] c[i2][j1],即小球垂直下落。

由此我们可以推导出小球的动态转移式子,即 f ( i , j ) = f ( i − 1 , j − 1 ) / 2 + f ( i − 1 , j ) / 2 + f ( i − 2 , j − 1 ) f(i,j)=f(i-1,j-1)/2+f(i-1,j)/2+f(i-2,j-1) f(i,j)=f(i1,j1)/2+f(i1,j)/2+f(i2,j1)

钉子坐标不能越界
检查钉子是否存在而确定具体的转移表达式

0x31 代码实现

声明

const int MAXN=55;
char c[MAXN][MAXN];
ll dp[MAXN][MAXN];

c存储钉子是否存在,dp数组必须为 long long(n最大取值为50,源头小球数最大为 2 50 > i n t 2^{50}>int 250>int)

dp初始化

if(c[1][1]=='*')
    {
        dp[1][1]=num;
        dp[2][1]=dp[2][2]=num>>1;
    }
    else 
    {
        dp[1][1]=num;
        dp[2][1]=dp[2][2]=0;
    }

实现细节

bool check(int x,int y)

检查越界

ll gcd(ll a, ll b)

求最大公因数

0x32 完整代码

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll MOD = 998244353;
const ll INF = 0x7fffffff;
// #define LOCAL_JUDGE
const int MAXN=55;
char c[MAXN][MAXN];
ll dp[MAXN][MAXN];
ll qpow(ll a, ll n)
{
    ll ans = 1; 
    while (n)
    {
        if (n & 1)
            ans = ans * a;
        n >>= 1;
        a = a * a;
    }
    return ans;
}
ll gcd(ll a, ll b)
{
    if (b == 0)
        return a;
    else
        return gcd(b, a%b);
}
bool check(int x,int y)
{
    return y>0&&y<=x;
}
int main()
{
    #ifdef LOCAL_JUDGE
    HACK;
    #endif

    int n,m;
    char ch;
    cin>>n>>m;

    ll num=qpow(2,n);

    for(int i=1;i<=n;++i)
    {
        for(int j=1;j<=i;++j)
        {
            cin>>ch;
            if(ch=='*'||ch=='.')
                c[i][j]=ch;
        }
    }
	// read
    if(c[1][1]=='*')
    {
        dp[1][1]=num;
        dp[2][1]=dp[2][2]=num>>1;
    }
    else 
    {
        dp[1][1]=num;
        dp[2][1]=dp[2][2]=0;
    }
	// init
    for(int i=3;i<=n+1;++i)
    {
        for(int j=1;j<=i;++j)
        {
            ll ans=0;
            if(check(i-1,j-1)&&c[i-1][j-1]=='*')
                ans+=dp[i-1][j-1]>>1;

            if(check(i-1,j)&&c[i-1][j]=='*')
                ans+=dp[i-1][j]>>1;

            if(check(i-2,j-1)&&c[i-2][j-1]=='.')
                ans+=dp[i-2][j-1];
            
            dp[i][j]=ans;
        }
    }
    // dp
    ll A=dp[n+1][m+1];
    ll B=gcd(A,num);

    if(A==0)
        cout<<0<<"/"<<1;
    else 
        cout<<A/B<<"/"<<num/B;

	return 0;
}


0x40 另

cin 不会读入空格 =_=

=)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值