pr视频剪辑入门 一篇文章,带你详细认识PR中四大面板的功能

上一篇文章,带大家了解了pr视频剪辑工具的基础界面和操作,相信小伙伴对于pr软件一定有了一些了解吧。接下来让我们一起更深层次的认识pr重的工具栏

这个是我们pr软件的界面,四大面板在上一篇文章中有介绍:

今天,我们再了解一些pr四大面板更多的功能:

一、源面板;

1、源面板(左上角那块):预览刚导入还未编辑的视频素材;

(1)项目面板中导入视频素材后,双击项目面板,就可以在源面板展现出来了;

(2)红圈中的1仅拖动视频:可将源面板中标记好的那段视频,拖入到时间轴编辑;

         红圈中2仅拖动音频:将源面板中标记好的那段视频的音频,拖入时间轴编辑;

(3)视频时间线、蓝块停留在当前位置;如下图

(4)添加标记、标记入点、标记出点等;如下图:

a、圈出的红色1: 添加标记(标记的是时间截点,某一瞬间),添加之后视频时间线上方出现绿色的块;

b、上图圈出的红色块2、3分别是:标记入点和标记出点;标记了一段视频,这段视频会高亮显示;

(5)插入、覆盖、导出帧;如下图:

a、插入:将一个视频插入到另一个视频中间,不影响原视频;

如下图:视频A是第一次导入的,视频B后边导入,点击插入即可将视频B插入到视频A中;(可以选择在视频A任意位置插入,下图是在视频A前边插入的)

b、覆盖:时间轴上边的视频的后半段,被源面板上的视频覆盖了,没有了;

c、导出帧:将时间线停留的某一帧导出来;可以点选导入到项目中,会直接在项目面板中显示,就不需要再去保存的盘里找了。



 

<think>嗯,用户想了解PageRank算法的实现原理、数据结构和示例代码。首先,我需要回忆一下PageRank的基本概念。PageRank是Google用来评估网页重要性的算法,核心思想是链接到该页面的数量和质量决定其排名。用户可能对背后的数学原理感兴趣,比如转移矩阵和阻尼因子的作用。 接下来,数据结构方面,可能需要用图结构来表示网页和链接关系。邻接表或邻接矩阵都是常见的选择,但考虑到效率,邻接表可能更适合,尤其是处理大规模数据时。此外,每个节点的权重需要存储和迭代更新。 然后,示例代码部分,用户可能希望看到Python的实现。代码需要展示如何构建图结构,初始化权重,迭代计算直到收敛。同时,要处理悬挂节点,即没有出链的节点,可能需要引入阻尼因子或者将它们的权重均匀分配。 还需要注意引用用户提供的参考资料,比如引用[1]中的社交网络应用和引用[2]中的二分图扩展。用户提到的Daugulis的工作可能涉及到更复杂的场景,但基础实现应该先讲清楚。 用户可能还有潜在的问题,比如如何处理大规模数据的分布式计算,或者如何优化算法效率。但根据问题描述,当前需要先回答核心内容,再生成相关问题。 最后,确保所有数学公式使用正确的LaTeX格式,行内公式用$...$,独立公式用$$...$$。例如,PageRank的公式应该单独成段,并用正确的符号表示阻尼因子和转移概率。 现在整理思路,分步解释实现原理,数据结构的选择,然后给出代码示例,并附上相关问题。确保引用正确,比如在提到社交网络应用时引用[^1],在提到二分图时引用[^2]。</think>### PageRank算法详解 #### 一、实现原理 PageRank算法通过网页间的超链接关系评估网页重要性,其核心公式为: $$PR(p_i) = \frac{1-d}{N} + d \sum_{p_j \in M(p_i)} \frac{PR(p_j)}{L(p_j)}$$ 其中 $d=0.85$ 为阻尼因子,$N$ 是总页面数,$M(p_i)$ 是链接到 $p_i$ 的页面集合,$L(p_j)$ 是 $p_j$ 的出链数量[^3]。 算法流程: 1. 初始化所有页面权重为 $1/N$ 2. 迭代计算权重直至收敛(变化小于阈值) 3. 处理悬挂节点(无出链的页面) #### 二、数据结构 1. **图结构**:使用邻接表存储页面链接关系,例如: ```python graph = { 'A': ['B', 'C'], 'B': ['C'], 'C': ['A'] } ``` 2. **权重矩阵**:字典存储每个节点的PR值 3. **转移矩阵**:稀疏矩阵存储概率转移关系(适合大规模数据) #### 三、示例代码 ```python def pagerank(graph, d=0.85, max_iter=100, tol=1e-6): nodes = list(graph.keys()) N = len(nodes) pr = {node: 1/N for node in nodes} for _ in range(max_iter): new_pr = {} dangling = sum(pr[node] for node in nodes if not graph[node]) / N for node in nodes: incoming = [link for link in graph.items() if node in link[1]] rank = (1 - d)/N + d * (sum(pr[src]/len(links) for src, links in incoming) + dangling) new_pr[node] = rank if sum(abs(new_pr[node] - pr[node]) for node in nodes) < tol: break pr = new_pr return pr # 测试用例 graph = {'A': ['B', 'C'], 'B': ['C'], 'C': ['A']} print(pagerank(graph)) ``` #### 四、应用场景 1. 社交网络影响力排名(用户关注关系)[^1] 2. 学术论文引用网络分析 3. 电商用户-商品二分图推荐系统[^2]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值