LeetCode(98) Validate Binary Search Tree解题报告

Given a binary tree, determine if it is a valid binary search tree (BST).

Assume a BST is defined as follows:

The left subtree of a node contains only nodes with keys less than the node’s key.
The right subtree of a node contains only nodes with keys greater than the node’s key.
Both the left and right subtrees must also be binary search trees.

解题思路:

中序遍历获取结点序列,如果是一个BST,那么序列一定是从小到大排好序的……

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
public class Solution {
     public boolean isValidBST(TreeNode root) {
       List<Integer> res = inorderTraversal(root);
       for(int i = 1; i < res.size(); i++){
           if(res.get(i) <= res.get(i-1))
               return false;
       }
       return true;
    }
    public List<Integer> inorderTraversal(TreeNode root) {
        List<Integer> res = new ArrayList<Integer>();
        if(root != null){
            res.addAll(inorderTraversal(root.left));
            res.add(root.val);
            res.addAll(inorderTraversal(root.right));
        }
        return res;
    }
}

下面附上网上的一种高效解法,也是中序遍历,不过是直接比较,省下了存储结点值得空间,也省下了检测顺序的时间,从LeetCode的提交结果分布来看,这种应该是最优的解法之一了。

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
public class Solution {
     TreeNode prev = null;
     public boolean isValidBST(TreeNode root) {
        if(root != null){
            if(!isValidBST(root.left))
                return false;
            if(prev != null && prev.val >= root.val)
                return false;
            prev = root;
            return isValidBST(root.right);      
        }
        return true;

    }   

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值