Given a binary tree, determine if it is a valid binary search tree (BST).
Assume a BST is defined as follows:
The left subtree of a node contains only nodes with keys less than the node’s key.
The right subtree of a node contains only nodes with keys greater than the node’s key.
Both the left and right subtrees must also be binary search trees.
解题思路:
中序遍历获取结点序列,如果是一个BST,那么序列一定是从小到大排好序的……
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public boolean isValidBST(TreeNode root) {
List<Integer> res = inorderTraversal(root);
for(int i = 1; i < res.size(); i++){
if(res.get(i) <= res.get(i-1))
return false;
}
return true;
}
public List<Integer> inorderTraversal(TreeNode root) {
List<Integer> res = new ArrayList<Integer>();
if(root != null){
res.addAll(inorderTraversal(root.left));
res.add(root.val);
res.addAll(inorderTraversal(root.right));
}
return res;
}
}
下面附上网上的一种高效解法,也是中序遍历,不过是直接比较,省下了存储结点值得空间,也省下了检测顺序的时间,从LeetCode的提交结果分布来看,这种应该是最优的解法之一了。
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
TreeNode prev = null;
public boolean isValidBST(TreeNode root) {
if(root != null){
if(!isValidBST(root.left))
return false;
if(prev != null && prev.val >= root.val)
return false;
prev = root;
return isValidBST(root.right);
}
return true;
}
}