http://ac.jobdu.com/problem.php?pid=1008
// 浙大10机试
// 1008:最短路径问题
// 多条件,需要修改Dijstra的算法条件部分
//
//
//
//
//
//
//
#include <stdio.h>
#include <vector>
using namespace std;
#define SIZE 1000+5
struct Edge{
int next;
int len;
int c;
};
vector<Edge> edge[SIZE];
bool mark[SIZE]; // 是否属于结合K
int Dis[SIZE]; // 1到点i的距离,-1为无穷。
int Cost[SIZE]; // 到点i的花费,不一定最少
void Init(int n){
for(int i=1; i<=n; i++)
{
edge[i].clear();
}
}
int main()
{
#ifdef ONLINE_JUDGE
#else
freopen("E:\\in.txt", "r", stdin);
#endif
int n, m;
while(scanf("%d%d", &n, &m) != EOF)
{
if(n == 0 && m ==0)
{
break;
}
Init(n);
while(m-->0)
{
int a, b, d, p;
scanf("%d%d%d%d", &a, &b, &d, &p);
Edge tmp;
tmp.len=d;
tmp.c=p;
tmp.next = b;
edge[a].push_back(tmp);
tmp.next=a;
edge[b].push_back(tmp);
}
int s, t;
scanf("%d%d", &s, &t);
/// Dijstra 核心
int i;
for(i=1; i<= n; i++)
{
mark[i]=false;
Dis[i]=-1;
//Cost[i],不需要初始化,因为第一参考值是距离而不是成本
}// Init
Dis[s] = 0;
Cost[s]= 0;//此处应当初始化
mark[s]=true;// 将自己加入集合K
int newP=s; // 新加入的节点
for(i=1; i<n; i++)
{
int j;
for(j=0; j < edge[newP].size(); j++)
{
int t = edge[newP][j].next;
int len = edge[newP][j].len;
int cost = edge[newP][j].c;
if(mark[t] == true)
{
continue;
}
// 修改处 //
if(Dis[t] == -1 || Dis[t] > Dis[newP]+len || (Dis[t] == Dis[newP]+len && Cost[t] > Cost[newP]+cost))
{
Dis[t] = Dis[newP]+len;
Cost[t] = Cost[newP]+cost;
}
// 修改处 //
}
int min=123123123;//最小值初始化为一个大整数,为找最小值做准备,只需大于边的长度即可
for(j = 1; j <= n; j++)// 遍历所有接节点
{
if(mark[j] == true)
{
continue;// 跳过已是结合的点
}
if(Dis[j] == -1)
{
continue;// 跳过不可达的点
}
if(Dis[j] < min)
{
min = Dis[j];
newP = j; //记录可能加入的下一个节点
}
}
mark[newP] = true;//加入集合K
}
/// Dijstra 结束
// 现已求出,节点1到所有节点的最短距离
printf("%d %d\n", Dis[t], Cost[t]);
}
return 0;
}