九度 题目1008:最短路径问题

最短路径问题,首先想到了贪心算法实现的dijkstra算法;这道题我用了链表的存储方式,其实用邻接矩阵也可以,主要为了练手,并且链表比矩阵要节约空间;

题目描述:
给你n个点,m条无向边,每条边都有长度d和花费p,给你起点s终点t,要求输出起点到终点的最短距离及其花费,如果最短距离有多条路线,则输出花费最少的。
输入:
输入n,m,点的编号是1~n,然后是m行,每行4个数 a,b,d,p,表示a和b之间有一条边,且其长度为d,花费为p。最后一行是两个数 s,t;起点s,终点t。n和m为0时输入结束。
(1<n<=1000, 0<m<100000, s != t)
输出:
输出 一行有两个数, 最短距离及其花费。
样例输入:
3 2
1 2 5 6
2 3 4 5
1 3
0 0
样例输出: 9 11 AC代码如下(主要运用了链表+Dijkstra算法):
#include <stdio.h>
#include <string.h>
#define inf 10000000
const int Maxn = 200005;
 
int N,M;
int visit[1001];//标记某个节点是否被求出最短距离
int first[1001];//存储每个节点为始点的链表的第一个边的标号
struct Edge{
     int target; //终点
     int next; //下一条边的标号
     int dt,ct; //边的长度和花费
}edge[Maxn];
 
struct BNode{
     int dist,cost;
}Node[1001]; //到达某点的最短路和花费
 
//相当于链表的头插发,很有意思。比用邻接矩阵高效多了
 
void addEdge( int index, int u, int v, int d, int c){
     edge[index].next = first[u]; //将这条边插入到u为初始节点的链表的头结点处
     edge[index].target = v;
     edge[index].dt = d;
     edge[index].ct = c;
     first[u] = index;
}
 
int findMinNode(){ //在剩下的所有节点中找最小的
     int i, Max = inf;
     int index = 0;
     for (i = 1; i <= N; i++){
         if (Node[i].dist < Max && !visit[i]){
             Max = Node[i].dist;
             index = i;
         }
     }
     return index;
}
 
void dijk( int s){
     int i;
     int flag = 1;
     Node[s].cost = Node[s].dist = 0;
     while (flag < N){ //更新N-1次
         int x = findMinNode();
         if (!x) break ;
         visit[x] = 1;
         flag++;
         for (i = first[x]; i != -1; i = edge[i].next){
             int target = edge[i].target;
             if (Node[x].dist + edge[i].dt < Node[target].dist && !visit[target]){ //更新节点
                 Node[target].dist = Node[x].dist + edge[i].dt;
                 Node[target].cost = Node[x].cost + edge[i].ct;
             } else if (Node[x].dist + edge[i].dt == Node[target].dist && !visit[target]){
             //如果存在多条路径,更新最小花费节点
                 if (Node[x].cost + edge[i].ct < Node[target].cost){
                     Node[target].cost = Node[x].cost + edge[i].ct;
                 }
             }
         }
     }
}
 
int main(){
     int u, v, d, c;
     int s, t;
     while ( scanf ( "%d %d" ,&N,&M) != EOF && (N != 0 || M != 0)){
         int index = 0;
         memset (first,-1, sizeof (first));
         for ( int i = 1; i <= N; i++){
             Node[i].dist = Node[i].cost = inf;
         }
 
         memset (visit, 0, sizeof (visit));
         for ( int i = 0; i < M; i++){
             scanf ( "%d %d %d %d" ,&u,&v,&d,&c);
             addEdge(index, u, v, d, c);
             index++;
             addEdge(index, v, u, d, c);
             index++;
         }
         scanf ( "%d %d" , &s, &t);
         dijk(s);
         printf ( "%d %d\n" ,Node[t].dist,Node[t].cost);
     }
}
/**************************************************************
     Problem: 1008
     User: 姜超
     Language: C++
     Result: Accepted
     Time:10 ms
     Memory:4160 kb
****************************************************************/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值