题目链接:257. 二叉树的所有路径
其中涉及到二叉树的遍历,因此用到递归,但又需要寻找所有路径,因此单层递归逻辑中存在回溯。递归与回溯一一对应,但仍然不好理解,所以单步调试看下代码整体运行流程。
#include <iostream>
#include <vector>
#include <string>
using namespace std;
struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode() : val(0), left(nullptr), right(nullptr) {}
TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
};
class Solution {
public:
void traversal(TreeNode* cur, vector<int>& path, vector<string>& result) {
path.push_back(cur->val); //中
//终止逻辑
if (cur->left == NULL && cur->right == NULL) { //遇到叶子结点
string sPath;
for (int i = 0; i < path.size() - 1; i++) {
sPath += to_string(path[i]);
sPath += "->";
}
sPath += to_string(path[path.size() - 1]);
result.push_back(sPath);
return;
}
//递归+回溯
if (cur->left) { //左
traversal(cur->left, path, result);
path.pop_back(); // 回溯
}
if (cur->right) { //右
traversal(cur->right, path, result);
path.pop_back(); // 回溯
}
}
vector<string> binaryTreePaths(TreeNode* root) {
vector<string> result;
vector<int> path;
if (root == NULL) return result;
traversal(root, path, result);
return result;
}
};
int main()
{
// 建立一棵二叉树
TreeNode* node5 = new TreeNode(5);
TreeNode* node6 = new TreeNode(6);
TreeNode* node7 = new TreeNode(7);
TreeNode* node4 = new TreeNode(4, node6, node7);
TreeNode* node3 = new TreeNode(3);
TreeNode* node2 = new TreeNode(2, nullptr, node5);
TreeNode* node1 = new TreeNode(1, node3, node4);
TreeNode* root = new TreeNode(0, node1, node2);
Solution S;
vector<string> paths;
paths = S.binaryTreePaths(root);
for (int i = 0; i < paths.size(); i++) {
cout << paths[i] << endl;
}
return 0;
}
二叉树如下图所示
因此,输出所有路径结果:
0->1->3
0->1->4->6
0->1->4->7
0->2->5
函数调用堆栈过程:
从main
函数第64
行调用binaryTreePaths
函数执行,在binaryTreePaths
函数中执行到第46
行时调用traversal
函数,在第一层traversal
函数中cur
指向root
,于是将根节点root
中值0
压入数组path
中,由于根节点的左孩子存在:node1
,因此会在33
行即将递归调用traversal
函数:
进入第二层traversal
函数中后,首先将结点值1
压入数组path
中,由于还未到达叶子结点,因此,会在33
行即将再次递归调用traversal
函数:
此时是第三层调用traversal
函数,到达叶子结点3
后,首先将结点值3
压入数组path
中,后进入递归终止逻辑,将路径处理后添加到result
中,执行到29
行即将结束第三层调用,程序回到第二层的第34行,第二层34行执行回溯过程,因为此时退回到结点1
,因此弹出数组中结点值3
,并执行到第二层的37
行,即将调用traversal
函数访问结点4
:
可见,此时,又将结点4
数组压入数组中,代码执行到33行,即将调用第四层traversal
函数,访问结点6
访问结点6
时,即访问到了叶子结点,得到result
数组第二种结果:0->1->4->6
。
接下来自然是回溯,弹出路径中的结点6
,并执行第三层递归调用中的37
行,
回溯完,再将结点7
添加进来,得到:0->1->4->7
函数调用栈一直弹出,直到第一层。即将执行37行,调用traversal
函数:
这里,将结点2
添加进来,由于结点2
没有左孩子,代码执行到37
行。
最后,访问叶子结点5
,得到第四种路径:0->2->5
函数调用全部结束,执行到main
函数中拿到所有路径。