找二叉树所有路径——代码分析

本文详细解析了如何使用递归与回溯算法遍历二叉树并找出所有路径。通过示例代码及调用堆栈分析,展示了从根节点开始,如何逐层遍历直至叶子节点,最终得到所有可能的路径。具体步骤包括压入路径、递归子节点、回溯路径等关键操作。
摘要由CSDN通过智能技术生成

题目链接:257. 二叉树的所有路径

其中涉及到二叉树的遍历,因此用到递归,但又需要寻找所有路径,因此单层递归逻辑中存在回溯。递归与回溯一一对应,但仍然不好理解,所以单步调试看下代码整体运行流程。

#include <iostream>
#include <vector>
#include <string>

using namespace std;

struct TreeNode {
    int val;
    TreeNode *left;
    TreeNode *right;
    TreeNode() : val(0), left(nullptr), right(nullptr) {}
    TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
    TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 };
 
class Solution {
public:
    void traversal(TreeNode* cur, vector<int>& path, vector<string>& result) {
        path.push_back(cur->val); //中
        //终止逻辑
        if (cur->left == NULL && cur->right == NULL) { //遇到叶子结点
            string sPath;
            for (int i = 0; i < path.size() - 1; i++) {
                sPath += to_string(path[i]);
                sPath += "->";
            }
            sPath += to_string(path[path.size() - 1]);
            result.push_back(sPath);
            return;
        }
        //递归+回溯
        if (cur->left) {  //左
            traversal(cur->left, path, result);
            path.pop_back(); // 回溯
        }
        if (cur->right) { //右
            traversal(cur->right, path, result);
            path.pop_back(); // 回溯
        }
    }

    vector<string> binaryTreePaths(TreeNode* root) {
        vector<string> result;
        vector<int> path;
        if (root == NULL) return result;
        traversal(root, path, result);
        return result;
    }
};
int main()
{
    // 建立一棵二叉树
    TreeNode* node5 = new TreeNode(5);
    TreeNode* node6 = new TreeNode(6);
    TreeNode* node7 = new TreeNode(7);
    TreeNode* node4 = new TreeNode(4, node6, node7);
    TreeNode* node3 = new TreeNode(3);
    TreeNode* node2 = new TreeNode(2, nullptr, node5);
    TreeNode* node1 = new TreeNode(1, node3, node4);
    TreeNode* root = new TreeNode(0, node1, node2);

    Solution S;
    vector<string> paths;
    paths = S.binaryTreePaths(root);

    for (int i = 0; i < paths.size(); i++) {
        cout << paths[i] << endl;
    }

	return 0;
}

二叉树如下图所示

在这里插入图片描述

因此,输出所有路径结果:

0->1->3
0->1->4->6
0->1->4->7
0->2->5

函数调用堆栈过程:

在这里插入图片描述
main函数第64行调用binaryTreePaths函数执行,在binaryTreePaths函数中执行到第46行时调用traversal函数,在第一层traversal函数中cur指向root,于是将根节点root中值0压入数组path中,由于根节点的左孩子存在:node1,因此会在33行即将递归调用traversal函数:

在这里插入图片描述
进入第二层traversal函数中后,首先将结点值1压入数组path中,由于还未到达叶子结点,因此,会在33行即将再次递归调用traversal函数:

在这里插入图片描述
此时是第三层调用traversal函数,到达叶子结点3后,首先将结点值3压入数组path中,后进入递归终止逻辑,将路径处理后添加到result中,执行到29行即将结束第三层调用,程序回到第二层的第34行,第二层34行执行回溯过程,因为此时退回到结点1,因此弹出数组中结点值3,并执行到第二层的37行,即将调用traversal函数访问结点4

在这里插入图片描述
在这里插入图片描述
可见,此时,又将结点4数组压入数组中,代码执行到33行,即将调用第四层traversal函数,访问结点6

在这里插入图片描述
访问结点6时,即访问到了叶子结点,得到result数组第二种结果:0->1->4->6

在这里插入图片描述
接下来自然是回溯,弹出路径中的结点6,并执行第三层递归调用中的37行,

在这里插入图片描述
回溯完,再将结点7添加进来,得到:0->1->4->7

在这里插入图片描述
函数调用栈一直弹出,直到第一层。即将执行37行,调用traversal函数:

在这里插入图片描述
这里,将结点2添加进来,由于结点2没有左孩子,代码执行到37行。

在这里插入图片描述
最后,访问叶子结点5,得到第四种路径:0->2->5

在这里插入图片描述
函数调用全部结束,执行到main函数中拿到所有路径。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值