Ubuntu docker自动退出解决方法

本文介绍了一种常见的Ubuntu Docker容器启动后立即退出的问题及其解决方案。通过对比两条不同的Docker运行命令,揭示了如何正确地使容器保持运行状态。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

用下面这条命令运行Ubuntu 的image会立即退出

sudo docker run -d --name=server daocloud.io/library/ubuntu:16.04 /bin/bash
  • 1

Solution:

sudo docker run -d  -it dockername /bin/bash
### 如何在 Ubuntu 上使用 Docker 容器安装和配置 PyTorch #### 准备工作 确保已正确安装 GPU 驱动程序以及 Docker 环境。对于 GPU 支持,需确认驱动版本兼容 CUDA 版本,并通过 `nvidia-smi` 命令验证驱动是否正常工作[^2]。 #### 获取官方镜像 拉取带有预编译 PyTorch 和其他依赖项的 Nvidia/PyTorch 官方 Docker 映像: ```bash docker pull pytorch/pytorch:latest-gpu-py3.8 ``` 此命令会下载最新的支持 GPU 的 PyTorch Docker 映像,其中包含了 Python 3.8 及其必要的库文件[^4]。 #### 启动容器 启动一个新的交互式终端会话来测试新创建的环境: ```bash docker run --gpus all -it --rm pytorch/pytorch:latest-gpu-py3.8 /bin/bash ``` 上述指令中的参数解释如下: - `--gpus all`: 访问主机上的所有可用 GPU 资源; - `-it`: 创建一个可以互动操作的 shell 终端; - `--rm`: 当退出自动删除该临时容器实例以节省空间; - `/bin/bash`: 执行 bash 登录到容器内部[^3]。 #### 测试 PyTorch 是否能正常使用 一旦进入了容器内的 Bash Shell ,可以通过下面这段简单的 Python 代码片段快速检验 PyTorch 对 GPU 的访问情况: ```python import torch print(torch.cuda.is_available()) print(f"CUDA Version : {torch.version.cuda}") ``` 如果一切设置无误,则应看到输出显示 True 并附带相应的 CUDA 版本号[^1]。 #### 持久化数据卷挂载 (可选) 为了使训练模型的数据集或保存下来的权重能够持久存在于宿主机而非仅限于容器内,在启动容器前建议指定外部目录映射至容器路径下: ```bash docker run --gpus all -v ~/data:/workspace/data -it --rm pytorch/pytorch:latest-gpu-py3.8 /bin/bash ``` 这里假设本地有一个名为 data 的文件夹用于存放相关资料,它会被绑定到容器里的 /workspace/data 文件夹位置。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值