AI赛事规则动态解析与三维演示系统

快速体验

  1. 打开 InsCode(快马)平台 https://www.inscode.net
  2. 输入框内输入如下内容:
    我需要开发一个AI赛事规则解析系统,帮助赛事组织者将复杂的比赛规则转化为直观的三维动态演示,用于裁判培训和选手指导。
    
    系统交互细节:
    1. 规则输入:组织者上传赛事规则文档或输入关键条款,系统通过OCR文字识别和LLM文本生成能力提取核心规则要点
    2. 场景建模:根据规则内容,文生图功能自动生成比赛场地的三维基础模型,包括器械、区域划分等关键元素
    3. 动作生成:LLM分析规则中的动作要求,生成标准动作序列描述,并转换为三维人物动画
    4. 违规演示:系统自动生成典型违规场景的对比演示,通过图像风格重绘突出违规关键帧
    5. 输出整合:生成包含规则解说、标准演示、违规对比的三维动态教学视频,支持多角度查看和慢动作回放
    
    注意事项:系统需支持主流体育赛事规则模板,提供时间轴编辑功能允许组织者调整演示节奏。
  3. 点击'项目生成'按钮,等待项目生成完整后预览效果

示例图片

最近在开发一个AI赛事规则解析系统,目的是帮助赛事组织者将复杂的比赛规则转化为直观的三维动态演示。这个系统主要面向裁判培训和选手指导,通过AI技术实现规则的可视化教学。下面分享一些开发过程中的关键点和经验总结。

  1. 规则输入环节 赛事规则通常以文档形式存在,系统首先需要处理这些文档。我们利用OCR技术识别文档中的文字内容,然后通过大语言模型(LLM)提取核心规则要点。这一步的关键是确保提取的信息准确无误,特别是对专业术语和特殊条款的处理。

  2. 场景建模 基于提取的规则要点,系统会自动生成比赛场地的三维基础模型。这包括场地尺寸、器械摆放、区域划分等关键元素。我们采用文生图技术,让AI根据规则描述自动构建合理的场地布局,大大节省了人工建模的时间。

  3. 动作生成 这是最核心的部分。系统会分析规则中对动作的要求,通过LLM生成标准动作序列的描述,然后转换为三维人物动画。难点在于如何准确地理解规则中的动作描述,并将其转化为合理的动作数据。我们通过大量体育动作数据的训练,让AI能够生成符合人体工学的标准动作。

  4. 违规演示 除了标准动作演示,系统还会自动生成典型违规场景的对比演示。通过图像风格重绘技术,可以突出显示违规的关键帧,让观众一目了然地看出违规点在哪里。这个功能对于裁判培训特别有用。

  5. 输出整合 最后,系统会将所有元素整合成一个完整的三维动态教学视频,包含规则解说、标准演示和违规对比。视频支持多角度查看和慢动作回放,让学习者可以从不同视角观察动作细节。

在开发过程中,我们发现几个关键点: - 规则理解的准确性直接影响后续所有环节的质量 - 动作生成需要大量专业运动数据支持 - 界面设计要简洁直观,方便非技术人员使用

这个项目的最大优势是将原本需要专业3D制作人员花费数天完成的工作,缩短到几分钟内自动完成。对于赛事组织者来说,可以快速生成高质量的培训材料,大大提高了工作效率。

整个开发过程在InsCode(快马)平台上完成,平台提供的一键部署功能特别方便。示例图片 我发现不用操心服务器配置,就能直接把项目部署上线测试,这对快速迭代开发很有帮助。平台内置的AI辅助功能也能给开发提供很多建议,很适合这种需要结合多种AI技术的项目。

快速体验

  1. 打开 InsCode(快马)平台 https://www.inscode.net
  2. 输入框内输入如下内容:
    我需要开发一个AI赛事规则解析系统,帮助赛事组织者将复杂的比赛规则转化为直观的三维动态演示,用于裁判培训和选手指导。
    
    系统交互细节:
    1. 规则输入:组织者上传赛事规则文档或输入关键条款,系统通过OCR文字识别和LLM文本生成能力提取核心规则要点
    2. 场景建模:根据规则内容,文生图功能自动生成比赛场地的三维基础模型,包括器械、区域划分等关键元素
    3. 动作生成:LLM分析规则中的动作要求,生成标准动作序列描述,并转换为三维人物动画
    4. 违规演示:系统自动生成典型违规场景的对比演示,通过图像风格重绘突出违规关键帧
    5. 输出整合:生成包含规则解说、标准演示、违规对比的三维动态教学视频,支持多角度查看和慢动作回放
    
    注意事项:系统需支持主流体育赛事规则模板,提供时间轴编辑功能允许组织者调整演示节奏。
  3. 点击'项目生成'按钮,等待项目生成完整后预览效果

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

【论文复现】一种基于价格弹性矩阵的居民峰谷分时电价激励策略【需求响应】(Matlab代码实现)内容概要:本文介绍了一种基于价格弹性矩阵的居民峰谷分时电价激励策略,旨在通过需求响应机制优化电力系统的负荷分布。该研究利用Matlab进行代码实现,构建了居民用电行为电价变动之间的价格弹性模型,通过分析不同时间段电价调整对用户用电习惯的影响,设计合理的峰谷电价方案,引导用户错峰用电,从而实现电网负荷的削峰填谷,提升电力系统运行效率稳定性。文中详细阐述了价格弹性矩阵的构建方法、优化目标函数的设计以及求解算法的实现过程,并通过仿真验证了所提策略的有效性。; 适合人群:具备一定电力系统基础知识和Matlab编程能力,从事需求响应、电价机制研究或智能电网优化等相关领域的科研人员及研究生。; 使用场景及目标:①研究居民用电行为对电价变化的响应特性;②设计并仿真基于价格弹性矩阵的峰谷分时电价激励策略;③实现需求响应下的电力负荷优化调度;④为电力公司制定科学合理的电价政策提供理论支持和技术工具。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,深入理解价格弹性建模优化求解过程,同时可参考文中方法拓展至其他需求响应场景,如工业用户、商业楼宇等,进一步提升研究的广度深度。
针对TC275微控制器平台,基于AUTOSAR标准的引导加载程序实现方案 本方案详细阐述了一种专为英飞凌TC275系列微控制器设计的引导加载系统。该系统严格遵循汽车开放系统架构(AUTOSAR)规范进行开发,旨在实现可靠的应用程序刷写启动管理功能。 核心设计严格遵循AUTOSAR分层软件架构。基础软件模块(BSW)的配置管理完全符合标准要求,确保了不同AUTOSAR兼容工具链及软件组件的无缝集成。引导加载程序本身作为独立的软件实体,实现了上层应用软件的完全解耦,其功能涵盖启动阶段的硬件初始化、完整性校验、程序跳转逻辑以及通过指定通信接口(如CAN或以太网)接收和验证新软件数据包。 在具体实现层面,工程代码重点处理了TC275芯片特有的多核架构内存映射机制。代码包含了对所有必要外设驱动(如Flash存储器驱动、通信控制器驱动)的初始化抽象层封装,并设计了严谨的故障安全机制回滚策略,以确保在软件更新过程中出现意外中断时,系统能够恢复到已知的稳定状态。整个引导流程的设计充分考虑了时序确定性、资源占用优化以及功能安全相关需求,为汽车电子控制单元的固件维护升级提供了符合行业标准的底层支持。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

StarlightOwl56

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值