快速体验
- 打开 InsCode(快马)平台 https://www.inscode.net
- 输入框内输入如下内容:
我需要开发一个AI赛事规则解析系统,帮助赛事组织者将复杂的比赛规则转化为直观的三维动态演示,用于裁判培训和选手指导。 系统交互细节: 1. 规则输入:组织者上传赛事规则文档或输入关键条款,系统通过OCR文字识别和LLM文本生成能力提取核心规则要点 2. 场景建模:根据规则内容,文生图功能自动生成比赛场地的三维基础模型,包括器械、区域划分等关键元素 3. 动作生成:LLM分析规则中的动作要求,生成标准动作序列描述,并转换为三维人物动画 4. 违规演示:系统自动生成典型违规场景的对比演示,通过图像风格重绘突出违规关键帧 5. 输出整合:生成包含规则解说、标准演示、违规对比的三维动态教学视频,支持多角度查看和慢动作回放 注意事项:系统需支持主流体育赛事规则模板,提供时间轴编辑功能允许组织者调整演示节奏。 - 点击'项目生成'按钮,等待项目生成完整后预览效果

最近在开发一个AI赛事规则解析系统,目的是帮助赛事组织者将复杂的比赛规则转化为直观的三维动态演示。这个系统主要面向裁判培训和选手指导,通过AI技术实现规则的可视化教学。下面分享一些开发过程中的关键点和经验总结。
-
规则输入环节 赛事规则通常以文档形式存在,系统首先需要处理这些文档。我们利用OCR技术识别文档中的文字内容,然后通过大语言模型(LLM)提取核心规则要点。这一步的关键是确保提取的信息准确无误,特别是对专业术语和特殊条款的处理。
-
场景建模 基于提取的规则要点,系统会自动生成比赛场地的三维基础模型。这包括场地尺寸、器械摆放、区域划分等关键元素。我们采用文生图技术,让AI根据规则描述自动构建合理的场地布局,大大节省了人工建模的时间。
-
动作生成 这是最核心的部分。系统会分析规则中对动作的要求,通过LLM生成标准动作序列的描述,然后转换为三维人物动画。难点在于如何准确地理解规则中的动作描述,并将其转化为合理的动作数据。我们通过大量体育动作数据的训练,让AI能够生成符合人体工学的标准动作。
-
违规演示 除了标准动作演示,系统还会自动生成典型违规场景的对比演示。通过图像风格重绘技术,可以突出显示违规的关键帧,让观众一目了然地看出违规点在哪里。这个功能对于裁判培训特别有用。
-
输出整合 最后,系统会将所有元素整合成一个完整的三维动态教学视频,包含规则解说、标准演示和违规对比。视频支持多角度查看和慢动作回放,让学习者可以从不同视角观察动作细节。
在开发过程中,我们发现几个关键点: - 规则理解的准确性直接影响后续所有环节的质量 - 动作生成需要大量专业运动数据支持 - 界面设计要简洁直观,方便非技术人员使用
这个项目的最大优势是将原本需要专业3D制作人员花费数天完成的工作,缩短到几分钟内自动完成。对于赛事组织者来说,可以快速生成高质量的培训材料,大大提高了工作效率。
整个开发过程在InsCode(快马)平台上完成,平台提供的一键部署功能特别方便。
我发现不用操心服务器配置,就能直接把项目部署上线测试,这对快速迭代开发很有帮助。平台内置的AI辅助功能也能给开发提供很多建议,很适合这种需要结合多种AI技术的项目。
快速体验
- 打开 InsCode(快马)平台 https://www.inscode.net
- 输入框内输入如下内容:
我需要开发一个AI赛事规则解析系统,帮助赛事组织者将复杂的比赛规则转化为直观的三维动态演示,用于裁判培训和选手指导。 系统交互细节: 1. 规则输入:组织者上传赛事规则文档或输入关键条款,系统通过OCR文字识别和LLM文本生成能力提取核心规则要点 2. 场景建模:根据规则内容,文生图功能自动生成比赛场地的三维基础模型,包括器械、区域划分等关键元素 3. 动作生成:LLM分析规则中的动作要求,生成标准动作序列描述,并转换为三维人物动画 4. 违规演示:系统自动生成典型违规场景的对比演示,通过图像风格重绘突出违规关键帧 5. 输出整合:生成包含规则解说、标准演示、违规对比的三维动态教学视频,支持多角度查看和慢动作回放 注意事项:系统需支持主流体育赛事规则模板,提供时间轴编辑功能允许组织者调整演示节奏。 - 点击'项目生成'按钮,等待项目生成完整后预览效果
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考
938

被折叠的 条评论
为什么被折叠?



