题目链接: https://ac.nowcoder.com/acm/contest/1109/A
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<ctime>
#include<iostream>
#include<algorithm>
using namespace std;
const int MAXN=205;
const int Mod=1000000007;
int a[MAXN][MAXN],b[MAXN][MAXN];
int fp(int a,int k) {
int res=1;
while(k) {
if(k&1)res=1LL*res*a%Mod;
a=1LL*a*a%Mod;
k>>=1;
}
return res;
}
void gauss(int n) {//注释均为上面部分代码作用
for(int i=1; i<=n; i++)
for(int j=1; j<=n; j++)
b[i][j]=(i==j);
int det=1;
for(int i=1; i<=n; i++) {
int t=i;
for(int k=i; k<=n; k++)
if(a[k][i]) t=k;
if(t!=i) det*=-1;//交换矩阵两行,对应行列式的值 * -1
for(int j=1; j<=n; j++) {
swap(a[i][j],a[t][j]);
swap(b[i][j],b[t][j]);
}//把第i列不是0的行全部和第i行交换
det=1LL*a[i][i]*det%Mod;//a[i][i]已经得出,不会再改变,而且下面会变成其他的值,具体看下面代码
int inv=fp(a[i][i],Mod-2);
for(int j=1; j<=n; j++) {
a[i][j]=1LL*inv*a[i][j]%Mod;
b[i][j]=1LL*inv*b[i][j]%Mod;
}// 目的只有一个,就是把当前 a[i][i]变成1,第i行的其他值是被迫跟着变的
for(int k=1; k<=n; k++) {
if(k==i) continue;
int tmp=a[k][i];
for(int j=1; j<=n; j++) {// 目的只有一个,就是把当前第i列的值全部变成1,每一行的其他值是被迫跟着变的
a[k][j]=(a[k][j]-1LL*a[i][j]*tmp%Mod+Mod)%Mod;
b[k][j]=(b[k][j]-1LL*b[i][j]*tmp%Mod+Mod)%Mod;
}
}//枚举每一列,每次既可以保证 第i列第i个元素, 即a[i][i] 的下面全部为 0
}
det=(det+Mod)%Mod;
for(int i=1; i<=n; i++)
for(int j=1; j<=n; j++)
b[i][j]=1LL*det*b[i][j]%Mod;//求行列式的值,下三角矩阵直接对角线乘积即可
}//该题目是为了求矩阵的逆,所以,a 才是原来的矩阵,b 是为了矩阵求逆,在原矩阵右边添加的单位矩阵
int main() {
int n;
while(scanf("%d",&n)!=EOF) {
for(int j=1; j<=n; j++)
a[1][j]=1;//我猜测,当一个矩阵某一行全部为一个相同的数时,该矩阵一定有逆矩阵
for(int i=2; i<=n; i++)
for(int j=1; j<=n; j++)
scanf("%d",&a[i][j]);
gauss(n);
for(int i=1; i<=n; i++)
printf("%d%c",(i&1 ? b[i][1] : (Mod-b[i][1])%Mod)," \n"[i==n]);
}
return 0;
}