高斯消元法模板

Sgu 275 To xor or not to xor

http://acm.sgu.ru/problem.php?contest=0&problem=275

题解:

http://hi.baidu.com/czyuan%5Facm/blog/item/be3403d32549633d970a16ee.html

 

这里提供下自己写的还算满意的求解整数线性方程组的模板(浮点数类似,就不提供了)~~

 

/* 用于求整数解得方程组. */

 

#include <iostream>

#include <string>

#include <cmath>

using namespace std;

 

const int maxn = 105;

 

int equ, var; // equ个方程,var个变元。增广阵行数为equ, 分别为0equ - 1,列数为var + 1,分别为0var.

int a[maxn][maxn];

int x[maxn]; // 解集.

bool free_x[maxn]; // 判断是否是不确定的变元.

int free_num;

 

void Debug(void)

{

    int i, j;

    for (i = 0; i < equ; i++)

    {

        for (j = 0; j < var + 1; j++)

        {

            cout << a[i][j] << " ";

        }

        cout << endl;

    }

    cout << endl;

}

 

inline int gcd(int a, int b)

{

    int t;

    while (b != 0)

    {

        t = b;

        b = a % b;

        a = t;

    }

    return a;

}

 

inline int lcm(int a, int b)

{

    return a * b / gcd(a, b);

}

 

// 高斯消元法解方程组(Gauss-Jordan elimination).(-2表示有浮点数解,但无整数解,-1表示无解,0表示唯一解,大于0表示无穷解,并返回自由变元的个数)

int Gauss(void)

{

    int i, j, k;

    int max_r; // 当前这列绝对值最大的行.

         int col; // 当前处理的列.

    int ta, tb;

    int LCM;

    int temp;

    int free_x_num;

    int free_index;

    // 转换为阶梯阵.

    col = 0; // 当前处理的列.

    for (k = 0; k < equ && col < var; k++, col++)

    { // 枚举当前处理的行.

        // 找到该col列元素绝对值最大的那行与第k行交换.(为了在除法时减小误差)

        max_r = k;

        for (i = k + 1; i < equ; i++)

        {

            if (abs(a[i][col]) > abs(a[max_r][col])) max_r = i;

        }

        if (max_r != k)

        { // 与第k行交换.

            for (j = k; j < var + 1; j++) swap(a[k][j], a[max_r][j]);

        }

        if (a[k][col] == 0)

        { // 说明该col列第k行以下全是0了,则处理当前行的下一列.

            k--; continue;

        }

        for (i = k + 1; i < equ; i++)

        { // 枚举要删去的行.

            if (a[i][col] != 0)

    {

                LCM = lcm(abs(a[i][col]), abs(a[k][col]));

                ta = LCM / abs(a[i][col]), tb = LCM / abs(a[k][col]);

                if (a[i][col] * a[k][col] < 0) tb = -tb; // 异号的情况是两个数相加.

                for (j = col; j < var + 1; j++)

                {

                    a[i][j] = a[i][j] * ta - a[k][j] * tb;

                }

    }

        }

    }

    Debug();

    // 1. 无解的情况: 化简的增广阵中存在(0, 0, ..., a)这样的行(a != 0).

    for (i = k; i < equ; i++)

    { // 对于无穷解来说,如果要判断哪些是自由变元,那么初等行变换中的交换就会影响,则要记录交换.

        if (a[i][col] != 0) return -1;

    }

    // 2. 无穷解的情况: var * (var + 1)的增广阵中出现(0, 0, ..., 0)这样的行,即说明没有形成严格的上三角阵.

    // 且出现的行数即为自由变元的个数.

    if (k < var)

    {

        // 首先,自由变元有var - k个,即不确定的变元至少有var - k.

        for (i = k - 1; i >= 0; i--)

        {

            // i行一定不会是(0, 0, ..., 0)的情况,因为这样的行是在第k行到第equ.

            // 同样,第i行一定不会是(0, 0, ..., a), a != 0的情况,这样的无解的.

            free_x_num = 0; // 用于判断该行中的不确定的变元的个数,如果超过1个,则无法求解,它们仍然为不确定的变元.

            for (j = 0; j < var; j++)

            {

                if (a[i][j] != 0 && free_x[j]) free_x_num++, free_index = j;

            }

            if (free_x_num > 1) continue; // 无法求解出确定的变元.

            // 说明就只有一个不确定的变元free_index,那么可以求解出该变元,且该变元是确定的.

            temp = a[i][var];

            for (j = 0; j < var; j++)

            {

                if (a[i][j] != 0 && j != free_index) temp -= a[i][j] * x[j];

            }

            x[free_index] = temp / a[i][free_index]; // 求出该变元.

            free_x[free_index] = 0; // 该变元是确定的.

        }

        return var - k; // 自由变元有var - k.

    }

    // 3. 唯一解的情况: var * (var + 1)的增广阵中形成严格的上三角阵.

    // 计算出Xn-1, Xn-2 ... X0.

    for (i = var - 1; i >= 0; i--)

    {

        temp = a[i][var];

        for (j = i + 1; j < var; j++)

        {

            if (a[i][j] != 0) temp -= a[i][j] * x[j];

        }

        if (temp % a[i][i] != 0) return -2; // 说明有浮点数解,但无整数解.

        x[i] = temp / a[i][i];

    }

return 0;

}

 

int main(void)

{

    freopen("Input.txt", "r", stdin);

    int i, j;

    while (scanf("%d %d", &equ, &var) != EOF)

    {

        memset(a, 0, sizeof(a));

   memset(x, 0, sizeof(x));

   memset(free_x, 1, sizeof(free_x)); // 一开始全是不确定的变元.

        for (i = 0; i < equ; i++)

        {

            for (j = 0; j < var + 1; j++)

            {

                scanf("%d", &a[i][j]);

            }

        }

//        Debug();

        free_num = Gauss();

        if (free_num == -1) printf("无解!/n");

   else if (free_num == -2) printf("有浮点数解,无整数解!/n");

        else if (free_num > 0)

        {

            printf("无穷多解! 自由变元个数为%d/n", free_num);

            for (i = 0; i < var; i++)

            {

                if (free_x[i]) printf("x%d 是不确定的/n", i + 1);

                else printf("x%d: %d/n", i + 1, x[i]);

            }

        }

        else

        {

            for (i = 0; i < var; i++)

            {

                printf("x%d: %d/n", i + 1, x[i]);

            }

        }

        printf("/n");

    }

    return 0;

}

 

/* czyuan原创,转载请注明出处。*/

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值