求逆元的几种方法

Plus : 当a为正数时,无论n的正负,a%n结果一样

            当a为负数时,a%n 的符合人的习惯的结果 = a%n+n

 

扩展欧几里得 

​
#include<bits/stdc++.h>
using namespace std;

int exgcd(int a,int b,int &x,int &y)//扩展欧几里得算法
{
    if(b==0)
    {
        x=1;y=0;
        return a;  //到达递归边界开始向上一层返回
    }
    int r=exgcd(b,a%b,x,y);
    int temp=y;    //把x y变成上一层的
    y=x-(a/b)*y;
    x=temp;
    return r;     //得到a b的最大公因数
}
int main(){
	int a,b,x,y;
	scanf("%d%d",&a,&b);//即所求方程为 ax=1(mod b) ,此模板可求出x,y的最小值 
	exgcd(a,b,x,y);
	printf("%d\n",(x+b)%b);//显然,当x为a的逆元(mod b的条件下) 
	return 0;
}
//同时,该模板还可以求出 ax+by=c 的解
//根据定理可以求出 ax+by=gcd(a,b)的 解x1 ,如果c%gcd(a,b)!=0,显然无解
//否则,c = k*gcd(a,b) = k*(ax+by) 显然 ax+by=c 的解 x2 = k*x1   k=c/gcd(a,b)
//由于x可能为负数,如果我们相知道x的最小大于0的值,我们就需要让y变小,x变大
//这个值最小的情况即为,y减去 b/gcd ,x加上 b/gcd
//最下面有例题

​

费马小定理

int inv(int x,int p){//快速幂求乘法逆元,谨记,p是一个素数
    int ans=1;
    int d=p-2;
    while(d)
    {
        if(d%2==1)
        {
            ans*=x;
            ans%=p;
        }
        x*=x;
        x%=p;
        d/=2;
    }
    return ans;
}

求一串数字的逆元,即  在mod p的意义下,求 1-n 的逆元  

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn = 3e6 + 5;
int inv[maxn];
void inverse(int n, int p) {
    inv[1] = 1;
    for (int i=2; i<=n; ++i) {
        inv[i] = (ll) (p - p / i) * inv[p%i] % p;
    }
}
int main(){
	int n,p;//求在mod p的意义下,1-n的逆元 
	scanf("%d%d",&n,&p);//时间复杂度为O(1),据说对于一串数字求逆元(n个数字均 mod p)的问题,该算法速度最快 
	inverse(n,p);
	for(int i=1;i<=n;i++){
		printf("%d\n",inv[i]);
	}
	return 0;
}

O(n) 求 阶乘的逆元

int inv[MAXN]; 
fac[0]=fac[1]=1;//显然 0! 1!的逆元均为1 
for(int i=2;i<=MAXN;i++)
	fac[i]=fac[i-1]*i%mod;//求出各个阶乘,并取模 
inv[MAXN]=quipow(fac[MAXN],mod-2);//求出最大的阶乘的逆元,如果mod不是质数,我们可以换用扩展欧几里得 
for(int i=MAXN-1;i>=0;i--)
	inv[i]=inv[i+1]*(i+1)%mod;//显然 1/(n-1)! = 1/n! * n 

附一道扩展欧几里得的例题: https://www.luogu.org/problem/P1516


#include<bits/stdc++.h>
#define ll long long
using namespace std;
void exgcd(ll a,ll b,ll &x,ll &y){//扩展欧几里得算法  所求方程为 ax=1(mod b) ,此模板可求出x的最小值 
	ll k;
    if(b==0){
        x=1;
        y=0;
        return;
    }
    exgcd(b,a%b,x,y);
    k=x;
    x=y;
    y=k-a/b*y;
    return ;
}
int main(){
	ll a,b,x,y,n,m,l;
	scanf("%lld%lld%lld%lld%lld",&a,&b,&m,&n,&l);
	ll A=n-m,B=l,C=a-b;
	if(A<0){//因为B恒为正,所以A为负数的话,gcd(A,B)会出现很多麻烦的情况
		A=-A;
		C=-C;
	}
	ll num=__gcd(A,B);
	if(C%num==0){
		exgcd(A,B,x,y);
		x=x*C/num;
		B/=num;
		printf("%d\n",(x+B)%B);
	}else{
		printf("Impossible\n");
	}

	return 0;
}

 

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值